首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the catalytic properties of the serine carboxypeptidase-like (SCPL) 1-O-sinapoyl-beta-glucose:l-malate sinapoyltransferase (SMT) from Arabidopsis showed that the enzyme exhibits besides its primary sinapoylation of l-malate, minor hydrolytic and disproportionation activities, producing free sinapic acid and 1,2-di-O-sinapoyl-beta-glucose, respectively. The ability of the enzyme to liberate sinapic acid from the donor molecule 1-O-sinapoyl-beta-glucose indicates the existence of a short-lived acylenzyme intermediate in the proposed random sequential bi-bi mechanism of catalysis. SMT-catalyzed formation of disinapoylglucose has been corroborated by docking studies with an established homology structure model that illustrates the possible binding of two 1-O-sinapoyl-beta-glucose molecules in the active site and the intermolecular reaction of the two glucose esters. The SMT gene is embedded in a tandem cluster of five SCPL sinapoyltransferase genes, which encode enzymes with high amino acid sequence identities and partially overlapping substrate specificities. We assume that in recent duplications of genes encoding SCPL proteins, neofunctionalization of the duplicates to accept 1-O-sinapoyl-beta-glucose as acyl donor was gained first, followed by subfunctionalization leading to different acyl acceptor specificities.  相似文献   

2.
Recently, serine carboxypeptidase-like (SCPL) proteins that catalyze transacylation reactions in plant secondary metabolism have been identified from wild tomato and Arabidopsis. These include sinapoylglucose: choline sinapoyltransferase (SCT), an enzyme that functions in Arabidopsis sinapate ester synthesis. SCT and the other known SCPL acyltransferases all share the conserved serine, aspartic acid, and histidine residues employed for catalysis by classical serine carboxypeptidases, although the importance of these residues and the mechanism by which this class of SCPL proteins catalyze acyltransferase reactions is unknown. To characterize further SCT and its catalytic mechanism, we have employed the Saccharomyces cerevisiae vacuolar protein localization 1 mutant, which secretes the serine carboxypeptidase, carboxypeptidase Y, and other proteins normally targeted to the vacuole. When expressed in this strain, SCT is similarly secreted. SCT has been purified from the yeast medium and used for kinetic characterization of the protein. Immunological analysis of SCT has revealed that the expected 50-kDa mature protein is proteolytically processed in yeast and in planta, most likely resulting in the production of a heterodimer derived from a 30- and 17-kDa polypeptide.  相似文献   

3.
4.
The occurrence of 1-sinapoylglucose: choline sinapoyltransferase (SCT) in seeds of various members of the Brassicaceae is reported. Within the species and cultivars investigated, a positive correlation was found between extractable levels of enzyme activity and the degree of sinapine accumulation. High enzymatic activities were found in seeds from Brassica, Raphanus and Sinapis, known for their high sinapine content.  相似文献   

5.
6.
Liu H  Wang X  Zhang H  Yang Y  Ge X  Song F 《Gene》2008,420(1):57-65
Serine carboxypeptidase-like proteins (SCPLs) comprise a large family of protein hydrolyzing enzymes that play roles in multiple cellular processes. During the course of study aimed at elucidating the molecular basis of induced immunity in rice, a gene, OsBISCPL1, encoding a putative SCPL, was isolated and identified. OsBISCPL1 contains a conserved peptidase S10 domain, serine active site and a signal peptide at N-terminus. OsBISCPL1 is expressed ubiquitously in rice, including roots, stems, leaves and spikes. Expression of OsBISCPL1 in leaves was significantly up-regulated after treatments with benzothiadiazole, salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid, and also up-regulated in incompatible interactions between rice and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants with constitutive expression of OsBISCPL1 were generated and disease resistance assays indicated that the OsBISCPL1-overexpressing plants showed an enhanced disease resistance against Pseudomonas syringae pv. tomato and Alternaria brassicicola. Expression levels of defense-related genes, e.g. PR1, PR2, PR5 and PDF1.2, were constitutively up-regulated in transgenic plants as compared with those in wild-type plants. Furthermore, the OsBISCPL1-overexpressing plants also showed an increased tolerance to oxidative stress and up-regulated expression of oxidative stress-related genes. The results suggest that the OsBISCPL1 may be involved in regulation of defense responses against pathogen infection and oxidative stress.  相似文献   

7.
8.
rsw3 is a temperature-sensitive mutant of Arabidopsis thaliana showing radially swollen roots and a deficiency in cellulose. The rsw3 gene was identified by a map-based strategy, and shows high similarity to the catalytic alpha-subunits of glucosidase II from mouse, yeast and potato. These enzymes process N-linked glycans in the ER, so that they bind and then release chaperones as part of the quality control pathway, ensuring correct protein folding. Putative beta-subunits for the glucosidase II holoenzyme identified in the Arabidopsis and rice genomes share characteristic motifs (including an HDEL ER-retention signal) with beta-subunits in mammals and yeast. The genes encoding the putative alpha- and beta-subunits are single copy and, like the rsw3 phenotype, widely expressed. rsw3 reduces cell number more strongly than cell size in stamen filaments and probably stems. Most features of the rsw3 phenotype are shared with other cellulose-deficient mutants, but some--notably, production of multiple rosettes and a lack of secreted seed mucilage--are not and may reflect glucosidase II affecting processes other than cellulose synthesis. The rsw3 root phenotype develops more slowly than the rsw1 and rsw2 phenotypes when seedlings are transferred to the restrictive temperature. This is consistent with rsw3 reducing glycoprotein delivery from the ER to the plasma membrane whereas rsw1 and rsw2 act more rapidly by affecting the properties of already delivered enzymes.  相似文献   

9.
10.
The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway-derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it encodes CYP83A1, a cytochrome P450 sharing a high degree of similarity to CYP83B1, an enzyme involved in glucosinolate biosynthesis. Upon further investigation, ref2 mutants were found to have reduced levels of all aliphatic glucosinolates and increased levels of indole-derived glucosinolates in their leaves. These results show that CYP83A1 is involved in the biosynthesis of both short-chain and long-chain aliphatic glucosinolates and suggest a novel metabolic link between glucosinolate biosynthesis, a secondary biosynthetic pathway found only in plants in the order Capparales, and phenylpropanoid metabolism, a pathway found in all plants and considered essential to the survival of terrestrial plant species.  相似文献   

11.
A cDNA encoding the HMG-I/Y protein from Arabidopsis thaliana has been isolated and characterised by nucleotide sequencing. The 903 bp cDNA contains a 612 bp open reading frame encoding a protein of 204 amino acid residues showing homology to HMG-I/Y proteins from other plant species. The protein contains four copies of the AT-hook motif which is involved in binding A/T-rich DNA. Southern blotting showed that the HMG-I/Y gene was present in a single copy in the Arabidopsis genome. The gene was localised to the top of chromosome 1 by RFLP analysis of F8 recombinant inbred lines. Northern blotting showed that the gene was expressed in all organs examined, with the highest expression in flowers and developing siliques.  相似文献   

12.
Dynamin-related proteins are high molecular weight GTPase proteins found in a variety of eukaryotic cells from yeast to human. They are involved in diverse biological processes that include endocytosis in animal cells and vacuolar protein sorting in yeast. We isolated a new gene, ADL2, that encodes a dynamin-like protein in Arabidopsis. The ADL2 cDNA is 2.68 kb in size and has an open reading frame for 809 amino acid residues with a calculated molecular mass of 90 kDa. Sequence analysis of ADL2 revealed a high degree of amino acid sequence similarity to other members of the dynamin superfamily. Among those members ADL2 was most closely related to Dnm1p of yeast and thus appears to be a member of the Vps1p subfamily. Expression studies showed that the ADL2 gene is widely expressed in various tissues with highest expression in flower tissues. In vivo targeting experiments showed that ADL2:smGFP fusion protein is localized to chloroplasts in soybean photoautroph cells. In addition experiments with deletion constructs revealed that the N-terminal 35 amino acid residues were sufficient to direct the smGFP into chloroplasts in tobacco protoplasts when expressed as a fusion protein.  相似文献   

13.
14.
Arabidopsis WAVE-DAMPENED 2 (WVD2) was identified by forward genetics as an activation-tagged allele that causes plant and organ stockiness and inversion of helical root growth handedness on agar surfaces. Plants with high constitutive expression of WVD2 or other members of the WVD2-LIKE (WDL) gene family have stems and roots that are short and thick, have reduced anisotropic cell elongation, are suppressed in a root-waving phenotype, and have inverted handedness of twisting in hypocotyls and roots compared with wild-type. The wvd2-1 mutant shows aberrantly organized cortical microtubules in peripheral root cap cells as well as reduced branching of trichomes, unicellular leaf structures whose development is regulated by microtubule stability. Orthologs of the WVD2/WDL family are found widely throughout the plant kingdom, but are not similar to non-plant proteins with the exception of a C-terminal domain distantly related to the vertebrate microtubule-associated protein TPX2. in vivo, WVD2 and its closest paralog WDL1 are localized to interphase cortical microtubules in leaves, hypocotyls and roots. Recombinant glutathione-S-transferase:WVD2 or maltose binding protein:WVD2 protein bind to and bundle microtubules in vitro. We speculate that a C-terminal domain of TPX2 has been utilised by the WVD2 family for functions critical to the organization of plant microtubules.  相似文献   

15.
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.  相似文献   

16.
The Arabidopsis thaliana (L.) Heynh. mutant delayed-dehiscence2-2 (dde2-2) was identified in an En1/Spm1 transposon-induced mutant population screened for plants showing defects in fertility. The dde2-2 mutant allele is defective in the anther dehiscence process and filament elongation and thus exhibits a male-sterile phenotype. The dde2-2 phenotype can be rescued by application of methyl jasmonate, indicating that the mutant is affected in jasmonic acid biosynthesis. The combination of genetic mapping and a candidate-gene approach identified a frameshift mutation in the ALLENE OXIDE SYNTHASE (AOS) gene, encoding one of the key enzymes of jasmonic acid biosynthesis. Expression analysis and genetic complementation of the dde2-2 phenotype by overexpression of the AOS coding sequence confirmed that the male-sterile phenotype is indeed caused by the mutation in the AOS gene.  相似文献   

17.
18.
Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. To uncover regulatory mechanisms of glucosinolate production, we screened Arabidopsis thaliana T-DNA activation-tagged lines and identified a high-glucosinolate mutant caused by overexpression of IQD1 (At3g09710). A series of gain- and loss-of-function IQD1 alleles in different accessions correlates with increased and decreased glucosinolate levels, respectively. IQD1 encodes a novel protein that contains putative nuclear localization signals and several motifs known to mediate calmodulin binding, which are arranged in a plant-specific segment of 67 amino acids, called the IQ67 domain. We demonstrate that an IQD1-GFP fusion protein is targeted to the cell nucleus and that recombinant IQD1 binds to calmodulin in a Ca(2+)-dependent fashion. Analysis of steady-state messenger RNA levels of glucosinolate pathway genes indicates that IQD1 affects expression of multiple genes with roles in glucosinolate metabolism. Histochemical analysis of tissue-specific IQD1::GUS expression reveals IQD1 promoter activity mainly in vascular tissues of all organs, consistent with the expression patterns of several glucosinolate-related genes. Interestingly, overexpression of IQD1 reduces insect herbivory, which we demonstrated in dual-choice assays with the generalist phloem-feeding green peach aphid (Myzus persicae), and in weight-gain assays with the cabbage looper (Trichoplusia ni), a generalist-chewing lepidopteran. As IQD1 is induced by mechanical stimuli, we propose IQD1 to be novel nuclear factor that integrates intracellular Ca(2+) signals to fine-tune glucosinolate accumulation in response to biotic challenge.  相似文献   

19.
20.
Anthocyanin biosynthesis in Arabidopsis is a convenient and relatively simple model for investigating the basic principles of secondary metabolism regulation. In recent years, many publications have described links between anthocyanin biosynthesis and general defense reactions in plants as well as photomorphogenesis and hormonal signaling. These relationships are complex, and they cannot be understood intuitively. Upon observing the lacuna in the Arabidopsis interactome (an interaction map of the factors involved in the regulation of Arabidopsis secondary metabolism is not available), we attempted to connect various cellular processes that affect anthocyanin biosynthesis. In this review, we revealed the main signaling protein modules that regulate anthocyanin biosynthesis. To our knowledge, this is the first reconstruction of a network of proteins involved in plant secondary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号