首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The skink, Mabuya multifasciata, torus semicircularis was subdivided into the central (CN), the laminar (LN), and the superficial (SN) nuclei using Golgi and Nissl methods. The central nucleus consisted of small ovoid neurons surrounding a core of fewer large ovoid-triangular and fusiform neurons. The ovoid cells had scant cytoplasm and two to five dendritic trunks. Most of these processes were directed around the periphery of the central nucleus. The large neurons had clumped, darkly staining Nissl substance and a central nucleus. The sparse dendritic spine population on these cells increased distally on the three to five radiate dendrites. The laminar nucleus was present caudal and ventral to the central nucleus. At more rostral levels it was medial and dorsomedial to the central nucleus. The NL had three to five layers of ovoid and fusiform neurons. Scattered within these layers were a few ovoid-triangular neurons. Ovoid neurons had eccentric or central nuclei. The arborization of their dendrites was generally medial and lateral but was frequently oriented caudomedial and rostrolateral. Fusiform neurons had pale Nissl substance, central nuclei, and one to two dendritic processes. The ovoid-triangular neurons had dense, clumped Nissl substance and at least two dendritic trunks with few spines. The superficial nucleus was dorsal, lateral, and caudal to the central nucleus. Extending ventrolaterally around the central nucleus, the superficial nucleus became confluent with the laminar nucleus, ensheathing the central nucleus ventrally, laterally, and dorsally. Rostrally the central nucleus was covered by the layers of the laminar nucleus. Within the superficial nucleus were ovoid, fusiform and sparse ovoid-triangular neurons. The study indicated that the morphology of the torus semicircularis in the golden skink was similar to that in other lizards. This similarity correlates with the degree of development as it relates to the auditory function, but was independent of the type of inner ear restraint mechanism.  相似文献   

2.
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic pregeniculate nucleus (PGN), which appears to include the intergeniculate leaflet (IGL), comprise circadian related centers in the primate brain. In this study, these centers were analysed in respect to their cytoarchitecture, retinal afferents and chemical of major cells and axon terminals with tract tracers and immunohistochemical techniques to define cytoarchitecture and connections, in the common marmoset. The SCN was shown to be a triangularly shaped cluster of compact cells just dorsal to the optic chiasm and lateral to the third ventricle. It is innervated in its ventral portion by terminals from the retina, and NPY-ergic fibers. Serotonergic and SP-staining processes are distributed throughout. VIP-neurons form a dorsolateral group of cells and CB-immunoreactive neurons fill much of the nucleus. The PGN was shown to be a wedge-shaped cluster of cells located dorsomedially to the dorsal lateral geniculate nucleus. It appears to comprise a ventral portion which receives a bilateral retinal projection and contains NPY-neurons, suggesting that this portion may correspond to IGL. The PGN also contains CB-neurons, PV-neurons and fibers, and SP- and 5-HT-fibers. These results in marmoset show that, beside a common plan revealed for most mammals, there are significant interspecific variations in the circadian timing system. Future studies are needed in order to elucidate the circadian organization in this primate species.  相似文献   

3.
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic pregeniculate nucleus (PGN), which appears to include the intergeniculate leaflet (IGL), comprise circadian related centers in the primate brain. In this study, these centers were analysed in respect to their cytoarchitecture, retinal afferents and chemical of major cells and axon terminals with tract tracers and immunohistochemical techniques to define cytoarchitecture and connections, in the common marmoset. The SCN was shown to be a triangularly shaped cluster of compact cells just dorsal to the optic chiasm and lateral to the third ventricle. It is innervated in its ventral portion by terminals from the retina, and NPY-ergic fibers. Serotonergic and SP-staining processes are distributed throughout. VIP-neurons form a dorsolateral group of cells and CB-immunoreactive neurons fill much of the nucleus. The PGN was shown to be a wedge-shaped cluster of cells located dorsomedially to the dorsal lateral geniculate nucleus. It appears to comprise a ventral portion which receives a bilateral retinal projection and contains NPY-neurons, suggesting that this portion may correspond to IGL. The PGN also contains CB-neurons, PV-neurons and fibers, and SP- and 5-HT-fibers. These results in marmoset show that, beside a common plan revealed for most mammals, there are significant interspecific variations in the circadian timing system. Future studies are needed in order to elucidate the circadian organization in this primate species.  相似文献   

4.
The brainstem reticular formation has been studied in 16 genera representing 11 families of reptiles. Measurements of Nissl-stained reticular neurons revealed that they are distributed along a continuum, ranging in length from 10 μm to 95 μm. Reticular neurons in crocodilians and snakes tend to be larger than those found in lizards and turtles. Golgi studies revealed that reticular neurons posess long, rectilinear, sparsely branching dendrites. Small reticular neurons ( > 31 μm length) possess fusiform or triangular somata which bear two or three primary dendrites. These dendrites have a somewhat simpler ramification pattern when compared with those of large reticular neurons (< 30 μm length). Large reticular neurons generally possess perikarya which are triangular or polygonal in shape. The somata of large reticular neurons bear an average of four primary dendrites. The dendrites of reptilian reticular neurons ramify predominantly in the transverse plane and are devoid of spines or excrescences. The dendritic ramification patterns observed in the various repitilian reticular nuclei were correlated with known input and output connections of these nuclei. Nissl and Golgi techniques were used to divide the reticular formation into seven nuclei. A nucleus reticularis inferior (RI) is found in the myelencephalon, a reticularis medius (RM) in the caudal two-thirds of the metencephalon, and a reticularis superior (RS) in the rostral metencephalon and caudal mesencephalon. Reticularis inferior can be subdivided into a dorsal portion (RID) and a ventral portion (RIV). All reptilian groups possess RID and RM but RIV is lacking in turtles. Reticularis superior can be subdivided into a large-celled lateral portion (RSL) and a small-celled medial portion (RSM). All reptilian groups possess RSM and RSL, but RSL is quite variable in appearance, being best developed in snakes and crocodilians. The myelencephalic raphe nucleus is also quite variable in its morphology among the different reptilian families. A seventh reticular nucleus, reticularis ventrolateralis (RVL), is found only in snakes and in teiid lizards. It was noted that the reticular formation is simpler (fewer numbers of nuclei) in the representatives of older reptilian lineages and more complex (greater numbers of nuclei) in the more modern lineages. Certain reticular nuclei are present or more extensive in those families which have prominent axial musculature.  相似文献   

5.
目的:应用生物胞素法观察罗非鱼滑车神经的形态分布。方法:本实验用罗非鱼,10只(性别不限),体长12~16cm,动物浸入140mg/L三卡因间氨苯酸乙脂甲磺酸盐{tricainemethanesulfonate(MS222)}溶液中麻醉,在手术显微镜下暴露滑车神经,通过生物胞素(Biocytin)结晶追踪技术研究定位硬骨鱼类滑车神经的形态分布。结果:①被标记的神经纤维长而粗细不等,平行致密排列,从后外下向前内上方向行走,逐渐上行,于中脑水管正中背侧部,进行交叉到对侧,终于中脑水管腹侧部的滑车神经核细胞。②神经核细胞呈圆形和卵圆形,大小不一,亦可见神经元的突起,有的突起呈螺旋状连于胞体,有的呈线状连于胞体,形成神经终末及突触联系,并可见到多极神经元。结论:鱼类滑车神经纤维在中脑内的走行与人类基本一致,滑车神经核位于中脑水管腹侧部。  相似文献   

6.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

7.
1. The aim of the present study is to map the incipient phase of Fos expression in the sacral spinal cord neuronal pools of multiple cauda equina constrictions canine model.2. Fos-positive neurons were found bilaterally in the lateral portion of superficial dorsal horn layers (Laminae I–III) and along the lateral edge of the dorsal horn accompanied by the lateral collateral pathway, fibers of Lissauer's tract, terminating at the sacral parasympathetic nucleus. Similarly, high Fos expression was detected in the ventral portion of the dorsal sacral commissure and in the dorsomedial portion of the anterior horns at S1–S3 segment level. Finally, a clearly expressed Fos-positivity was disclosed bilaterally in the neuropil of the nucleus Y in the anterior horn.3. Data from the present study show that continuous stimulation of the central fibers of sacral dorsal root ganglia neurons, i.e., fibers of sacral primary afferents, unlike those using various stimulations of the peripheral fibres offers an unusual pattern of Fos-like immunoreactivity.  相似文献   

8.
The immunohistochemical distribution of serotonin-containing nerve fibres and cells has been described in the brain of the Antarctic fish, Trematomus bernacchii. The largest serotonergic system was associated with the diencephalic and rhombencephalic ventricles. In particular, serotonin-positive cells have been found in the lateral recess and neuropile zone of the diencephalic ventricle, where we have identified the serotonergic portion of the paraventricular organ. Numerous serotonin cells were localized in the dorsal nucleus of the raphe, the dorsal tegmental nucleus and the central gray. Two large cell groups, arranged in a pair of well-defined columns and connecting the central gray with the dorsal reticular formation, were immunostained in the region of the trigeminal nuclei. In addition, few positive cells have been found in the preoptic area and the cerebellar valvula, and few serotonergic nerve fibres, probably belonging to the lateral lemniscus, have been identified. The distribution of serotonin elements in the brain of T. bernacchii has been compared with that described in other fish, where it showed some modifications in the immunoreactive pattern. Finally, the lack of a serotonergic system at the level of the reticular superior formation has been reported; however, it was not possible to rule out a phylogenetic or environmental explanation.  相似文献   

9.
10.
An antiserum raised against the synthetic tripeptide pyroglutamyl-histidyl-proline (free acid) was used to localize thyrotropin-releasing hormone (TRH) in the rat central nervous system (CNS) by immunocytochemistry. The distribution of TRH-immunoreactive structures was similar to that reported earlier; i.e., most of the TRH-containing perikarya were located in the parvicellular part of the hypothalamic paraventricular nucleus, the suprachiasmatic portion of the preoptic nucleus, the dorsomedial nucleus, the lateral basal hypothalamus, and the raphe nuclei. Several new locations for TRH-immunoreactive neurons were also observed, including the glomerular layer of the olfactory bulb, the anterior olfactory nuclei, the diagonal band of Broca, the septal nuclei, the sexually dimorphic nucleus of the preoptic area, the reticular thalamic nucleus, the lateral reticular nucleus of the medulla oblongata, and the central gray matter of the mesencephalon. Immunoreactive fibers were seen in the median eminence, the organum vasculosum of the lamina terminalis, the lateral septal nucleus, the medial habenula, the dorsal and ventral parabrachial nuclei, the nucleus of the solitary tract, around the motor nuclei of the cranial nerves, the dorsal vagal complex, and in the reticular formation of the brainstem. In the spinal cord, no immunoreactive perikarya were observed. Immunoreactive processes were present in the lateral funiculus of the white matter and in laminae V-X in the gray matter. Dense terminal-like structures were seen around spinal motor neurons. The distribution of TRH-immunoreactive structures in the CNS suggests that TRH functions both as a neuroendocrine regulator in the hypothalamus and as a neurotransmitter or neuromodulator throughout the CNS.  相似文献   

11.
The sonic motor nucleus (SMN), a likely homologue of the hypoglossal nucleus, provides the final common pathway for sound production in the oyster toadfish (Opsanus tau). SMN neurons increase in size and number for 7-8 years postnatally, and the swimbladder-sonic muscle complex grows throughout life. This study describes the normal embryonic and larval development of the SMN from its initial differentiation on about day 19 through day 40, when the yolk sac is resorbed and the fish is free swimming. In contrast to the rapid development of CNS nuclei in mammals, the SMN gradually increased in maturity with more active growth at the beginning and end of the observation period and a relatively static period in the middle. Consistent with a hypoglossal homology, the SMN differentiated within the spinal cord, added cells rostrally, and eventually extended into the medulla. Immature neurons appeared to originate from precursor cells in the ventral portion of the ventricular zone of the central canal. Such cells were initially round with little cytoplasmic development and later added processes and Nissl substance. The number of neurons increased 10-fold from a median of 35 to 322 cells, and no evidence of cell death was observed. Soma area approximately doubled from 20.6 to 41.2 micron 2, and cell nucleus area followed a similar pattern. [3H]-thymidine autoradiography demonstrated that neurons were added continuously throughout the nucleus during embryonic and larval development.  相似文献   

12.
Anterior dorsal ventricular ridge (ADVR) is a major subcortical, telencephalic nucleus in snakes. Its structure was studied in Nissl, Golgi, and electron microscopic preparations in several species of snakes. Neurons in ADVR form a homogeneous population. They have large nuclei, scattered cisternae of rough endoplasmic reticulum in their cytoplasm, and bear dendrites from all portions of their somata. The dendrites have a moderate covering of pedunculated spines. Clusters of two to five cells with touching somata can be seen in Nissl, Golgi, and electron microscopic preparations. The area of apposition may contain a series of specialized junctions which resemble gap junctions. Three populations of axons can be identified in rapid Golgi preparations of snake ADVR. Type 1 axons course from the lateral forebrain bundle and bear small varicosities about 1 mu long. Type 2 axons arise from ADVR neurons and bear large varicosities about 5 mu long. The origin of the very thin type 3 axons is not known; they bear small varicosities about 1 mu long. The majority of axon terminals in ADVR are small (1 mu to 2 mu long), contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates on dendritic spines and shafts and on somata. A small percentage of terminals are large, 5 mu in length, contain round synaptic vesicles, and form asymmetric active zones. This type of axon terminates only on dendritic spines. A small percentage of terminals are small, contain pleomorphic synaptic vesicles, and form symmetric active zones. This type of axon terminates on dendritic shafts and on somata.  相似文献   

13.
An immunohistochemical method, using glutaraldehyde fixation and a highly specific monoclonal antibody recently synthetized against dopamine (DA)-glutaraldehyde protein conjugate, permitted direct visualization of DA structures in the brainstem and spinal cord of a reptile (Chameleon). DA-immunoreactive cell bodies occurred in some contiguous areas of the midbrain tegmentum. The first one was located in the ventral tegmental area. Some somata intermingled with the oculomotor nucleus. The second group was the large round or oval DA-Immunostained neurons located in the substantia nigra. More caudally, a third group of round or fusiform DA-cell bodies was seen in an homologous area of so called mammalian A8 and were continuous with the substantia nigra group. In the medulla oblongata, the DA-containing cells were shown in the nucleus of solitary tract and in the dorsal lateral part of the dorsal motor nucleus of the vagus. The density of this DA-Immunoreactive neurons decreased more caudally. At the medullo-spinal level and upper cervical spinal cord, a few labelled cells were distinguished near the central canal. In the spinal cord DA-immunopositive cell bodies were observed in the vicinity of the central canal and formed a continuous column that extended throughout the rostral spinal cord. The apical processes of these neurons seemed to be in contact with the lumen of the central canal. This study constitute the first visualization of the immunoreactive DA-cell bodies at the medullo-spinal level which were already described, as TH immunoreactive in other species of reptiles.  相似文献   

14.
T S Gray  D J Magnuson 《Peptides》1992,13(3):451-460
The central nucleus of the amygdala, bed nucleus of the stria terminalis, and central gray are important components of the neural circuitry responsible for autonomic and behavioral responses to threatening or stressful stimuli. Neurons of the amygdala and bed nucleus of the stria terminalis that project to the midbrain central gray were tested for the presence of peptide immunoreactivity. To accomplish this aim, a combined immunohistochemical and retrograde tracing technique was used. Maximal retrograde labeling was observed in the amygdala and bed nucleus of the stria terminalis after injections of retrograde tracer into the caudal ventrolateral midbrain central gray. The majority of the retrogradely labeled neurons in the amygdala were located in the medial central nucleus, although many neurons were also observed in the lateral subdivision of the central nucleus. Most of the retrogradely labeled neurons in the BST were located in the ventral and posterior lateral subdivisions, although cells were also observed in most other subdivisions. Retrogradely labeled neurotensin, corticotropin releasing factor (CRF), and somatostatin neurons were mainly observed in the lateral central nucleus and the dorsal lateral BST. Retrogradely labeled substance P-immunoreactive cells were found in the medial central nucleus and the posterior and ventral lateral BST. Enkephalin-immunoreactive retrogradely labeled cells were not observed in the amygdala or bed nucleus of the stria terminalis. A few cells in the hypothalamus (paraventricular and lateral hypothalamic nuclei) that project to the central gray also contained CRF and neurotensin immunoreactivity. The results suggest the amygdala and the bed nucleus of the stria terminalis are a major forebrain source of CRF, neurotensin, somatostatin, and substance P terminals in the midbrain central gray.  相似文献   

15.
Extraocular muscle motoneurones were localised in the oculomotor nucleus (ON), trochlear nucleus (TN) and abducens nucleus (AN) in the marmoset brain using the horseradish peroxidase (HRP) retrograde labelling technique. HRP pellets injected into individual extraocular muscles revealed one or more groups of labelled neurones occupying discrete loci within these nuclei. Relatively little overlap of motoneurone pools was observed, except in the case of the inferior oblique and superior rectus muscles. Injections of HRP into the medial rectus muscle revealed three separate populations of labelled cells in the ipsilateral ON. Motoneurones innervating the inferior rectus muscle were mainly localised in the lateral somatic cell column of the ipsilateral ON. A second smaller grouping was observed in the medial longitudinal fasciculus. The inferior oblique muscle motoneurones were localised in the ipsilateral medial somatic cell column intermingled with motoneurones supplying the superior rectus muscle of the opposite eye. The superior oblique muscle motoneurones occupied the entire TN and the lateral rectus muscle motoneurones the AN. It was concluded that the organisation of nuclei and subnuclei responsible for controlling the extraocular muscles in the marmoset is broadly similar to that of other primates.  相似文献   

16.
The common marmoset is a small New World primate that has attracted remarkable attention as a potential experimental animal link between rodents and humans. Adeno-associated virus (AAV) vector-mediated expression of a disease-causing gene or a potential therapeutic gene in the brain may allow the construction of a marmoset model of a brain disorder or an exploration of the possibility of gene therapy. To gain more insights into AAV vector-mediated transduction profiles in the marmoset central nervous system (CNS), we delivered AAV serotype 9 (AAV9) vectors expressing GFP to the cisterna magna or the cerebellar cortex. Intracisternally injected AAV9 vectors expanded in the CNS according to the cerebrospinal fluid (CSF) flow, by retrograde transport through neuronal axons or via intermediary transcytosis, resulting in diffuse and global transduction within the CNS. In contrast, cerebellar parenchymal injection intensely transduced a more limited area, including the cerebellar cortex and cerebellar afferents, such as neurons of the pontine nuclei, vestibular nucleus and inferior olivary nucleus. In the spinal cord, both administration routes resulted in labeling of the dorsal column and spinocerebellar tracts, presumably by retrograde transport from the medulla oblongata and cerebellum, respectively. Motor neurons and dorsal root ganglia were also transduced, possibly by diffusion of the vector down the subarachnoid space along the cord. Thus, these two administration routes led to distinct transduction patterns in the marmoset CNS, which could be utilized to generate different disease animal models and to deliver therapeutic genes for the treatment of diseases affecting distinct brain areas.  相似文献   

17.
In order to establish the synaptic relationship between the primary afferent terminals and the cuneothalamic relay neurons in the cuneate nucleus, the combined retrograde transport of horseradish peroxidase (HRP) and experimental degeneration have been applied in the young adult albino rats. 10 to 30% HRP was injected contralaterally (0.5 microliter) in the ventrobasal thalamic nucleus and multiple dorsal rhizotomies (C5 to T1) in the cervicothoracic dorsal roots were performed on the side ipsilateral to the cuneate nucleus. The results showed that: The cuneo-thalamic relay (CTN) neurons were the major neuronal type of the nucleus. More than 55% of neurons have been labelled. These neurons were 18-30 micron X 15-25 micron in sizes. They distributed in the whole rostrocaudal extent of the nucleus, particularly dense in the middle portion. The cells varied from round, oval, spindle to multipolar in shapes. They were rich in cytoplasmic organelles and had well-developed roughed endoplasmic reticulum. Their nucleus was either centrally or eccentrically located and was rather regular. The HRP-positive granules were randomly distribute in the perikaryon, dendrites and initial segment of the axons; At least three types of the experimental degeneration of the primary afferent terminals (PAT) were observed in the cuneate nucleus two to three days after dorsal rhizotomy, namely, electron-dense, granular and neurofilamentous. These PAT were mostly large and contained round vesicles. They were commonly found within synaptic complex, in which they were presynaptic to dendrites of various sizes, and were themselves postsynaptic to smaller axon terminals containing flattened vesicles. Degenerating PAT forming isolated synapses were less commonly seen; The PAT in the synaptic complex were directly presynaptic to the dendrites originating from the CTN neurons. The dendrites forming PAT-CTN synases were of large and medium-sized. The PAT did not form direct axo-somatic synapses with the somata of CTN or of any other cell types in the cuneate nucleus.  相似文献   

18.
Summary The amygdaloid complex in the cat was studied in a series of Golgi preparations. Both the lateral and the basal nucleus are composed of the same two cell types, one of which (type P) resembles the pyramidal and the other (type S) the stellate neuron of the cortex. The cortical nucleus can be divided into three layers (I, II, and III–IV) which are made up of cells similar to those in the periamygdaloid cortex. In addition, there are sufficient differences in the organization of these layers to justify a subdivision of the cortical nucleus into lateral and medial parts. The dendrites of neurons in the medial part of the central nucleus, the medial nucleus and the anterior amygdaloid area undergo less branching and carry fewer spines than those of the type P cell. The neurons in the nucleus of the lateral olfactory tract are all of the pyramidal or modified pyramidal type. These findings are discussed in relation to those of previous investigators who employed the Nissl and Golgi methods.This investigation was supported by the Medical Research Council of Canada, Grant M.T. 870. The author wishes to thank Miss Elizabeth Korzeniowski for her technical assistance.  相似文献   

19.
20.
The retinal innervation, cytoarchitectural, and immunohistochemical organization of the suprachiasmatic nucleus (SCN) was studied in the domestic sheep. The SCN is a large elongated nucleus extending rostrocaudally for roughly 3 mm in the hypothalamus. The morphology is unusual in that the rostral part of the nucleus extends out of the main mass of the hypothalamus onto the dorsal aspect of the optic chiasm. Following intraocular injection of wheat-germ agglutininhorseradish peroxidase or tritiated amino acids, anterograde label is distributed throughout the SCN. Retinal innervation of the SCN is bilaterally symmetric or predominantly ipsilateral. Quantitative image analysis demonstrates that, although the amount of autoradiographic label is greatest in the ventral and central parts of the nucleus, density varies progressively between different regions. In addition to the SCN, retinal fibers are also seen in the medial preoptic area, the anterior and lateral hypothalamic areas, the dorsomedial hypothalamus, the retrochiasmatic area, and the basal telencephalon. Whereas the SCN can be identified using several techniques, complete delineation of the nucleus requires combined tract tracing, cytoarchitectural, and histochemical criteria. Compared with the surrounding hypothalamic regions, the SCN contains smaller, more densely packed neurons, and is largely devoid of myelinated fibers. Cell soma sizes are smaller in the ventral SCN than in the dorsal or lateral parts, but an obvious regional transition is lacking. Using Nissl, myelin, acetylcholinesterase, and cytochrome oxidase staining, the SCN can be clearly distinguished in the rostral and medial regions, but is less differentiated toward the caudal pole. Immunohistochemical demonstration of several neuropeptides shows that the neurochemical organization of the sheep SCN is heterogeneous, but that it lacks a distinct compartmental organization. Populations of different neuropeptide-containing cells are found throughout the nucleus, although perikarya positive for vasoactive intestinal polypeptide and fibers labeled for methionine-enkephalin are predominant ventrally; neurophysine-immunoreactive cells are more prominent in the dorsal region and toward the caudal pole. The results suggest that the intrinsic organization of the sheep SCN is characterized by gradual regional transitions between different zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号