首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Some properties of purified endo-l,4-β-D-xylanase (1,4-β-D-xylan xylanohydrolase, EC 3.2.1.8) from the ligniperdous fungusTrametes hirsuta were investigated. The enzyme was stable between pH 4.0 and 8.0 with optimum activity at pH 5.0–5.5. The temperature optimum was 50 °C and the enzyme was stable for up to 30 min at 45 °C; however, it was denatured at higher temperatures. TheK m for 4-O-methylgluourono-D-xylan was 6.36. 10−3 equivalents ofD-xylose per litre, the activation energy was 28 kJ mol−1. The molecular weight determined by means of gel chromatography was 22000–24000. The enzyme was activated by Ca2+ and inhibited by Ag+ and Hg2+. On the basis of the effect of 2-hy-droxy-5 nitrobenzyl bromide, N-bromosuccimmide and N-aeetyhmidazole it may be assumed that trytophan and possibly tyrosine residues influence the enzyme catalysis.  相似文献   

2.
The presence of three lectins in the seeds of Vicia hirsuta (L.) S. F. Gray, a wild-growing vetch, was shown. The main lectin was purified to homogeneity by buffer extraction, ammonium sulfate precipitation, affinity chromatography on Sephadex G-100 and isoelectric focusing in granulated gel. By chromatofocusing instead of isoelectric focusing the yield was increased 5-fold. The lectin has a pi of 6.4. It is composed of large β-subunits (Mr 19.200) and small α-subunits (Mr 12.800) in a 1:1 ratio. The subunits can be separated on Sephadex G-75 when equilibrated with 6 M guanidine-HCl. The amino acid composition of the two different subunits has been determined. No sulfur-containing amino acids are present. The lectin resembles the lectins from legumes from the same cross-inoculation group, i.e. Lens culinaris, Lens esculenta, Pisum satiyum and several Vicia spp. by the same type of sugar specificity and amino acid composition.  相似文献   

3.
Malate synthase (EC 4.1.3.2), the key enzyme of the glyoxylate cycle, was purified to a homogeneous protein from the wood-rotting basidiomycete Fomitopsis palustris grown on glucose. The purified enzyme, with a molecular mass of 520 kDa, was found to consist of eight 65-kDa subunits, and to have Km of 45 and 2.2 microM for glyoxylate and acetyl-CoA, respectively. The enzyme activity was competitively inhibited by oxalate (K1, 8.5 microM) and glycolate (Ki, 17 microM), and uncompetitively by coenzyme A (Ki, 100 microM). The potent inhibition of the activity by p-chloromercuribenzoate suggests that the enzyme has a sulfhydryl group at the active center. However, the enzyme was inhibited moderately by adenine nucleotides and weakly by some of the metabolic intermediates of glycolysis and tricarboxylic acid cycle. The enzyme was completely inactive in the absence of metal ions and was maximally activated by Mg2+ (Km, 0.4 microM), which also served to significantly prevent enzyme inactivation during storage.  相似文献   

4.
NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), a key enzyme of the tricarboxylic acid cycle, was purified 672-fold as a nearly homogeneous protein from the copper-tolerant wood-rotting basidiomycete Fomitopsis palustris. The purified enzyme, with a molecular mass of 115 kDa, consisted of two 55-kDa subunits, and had the Km of 12.7, 2.9, and 23.9 microM for isocitrate, NADP, and Mg2+, respectively, at the optimal pH of 9.0. The enzyme had maximum activity in the presence of Mg2+, which also helped to prevent enzyme inactivation during the purification procedures and storage. The enzyme activity was competitively inhibited by 2-oxoglutarate (K(i), 127.0 microM). Although adenine nucleotides and other compounds, including some of the metabolic intermediates of glyoxylate and tricarboxylic acid cycles, had no or only slight inhibition, a mixture of oxaloacetate and glyoxylate potently inhibited the enzyme activity and the inhibition pattern was a mixed type.  相似文献   

5.
In order to save energy during the pulp making process, we tried to use white-rot basidiomycete, Trametes hirsuta, which degrades lignin efficiently. But a decrease in paper strength caused by cellulolytic activity ruled this out for practical application. Since the cellulolytic activity of the fungus must be decreased, we purified and characterized a cellobiose dehydrogenase (CDH) that was reported to damage pulp fiber. The CDH in the culture filtrate of C. hirsutus was purified by freeze-thawing and chromatographic methods. The pI of the enzyme was 4.2 and its molecular weight was 92 kDa. The optimal temperature and pH of the enzyme were 60-70 degrees C and 5.0 respectively. Since the purified CDH decreased the viscosity of pulp in the presence of Fe(III) and cellobiose, it was shown that the suppression of CDH should be an effective way to reduce cellulose damage.  相似文献   

6.
7.
8.
对米曲霉原始发酵液中耐热木聚糖酶进行纯化和酶学特性研究,利用甘蔗渣为碳源培养米曲霉,通过超滤和阴离子交换柱两步纯化得到木聚糖酶XynH1,分子量35.402kDa,利用飞行时间质谱和SDS—PAGE分析,推断XynH1为XylanaseXynF1,分子量为35.402kDa。XynH1属于糖苷水解酶家族10,酶活为442.2IU/nag,最适pH和温度分别为pH6.0和65℃,80℃以下及pH4.0~10.5范围内较稳定。  相似文献   

9.
绵毛嗜热丝孢菌木聚糖酶的纯化与性质   总被引:2,自引:0,他引:2  
研究了绵毛嗜热丝孢菌Thermomyces lanuginosus W205胞外木聚糖酶的纯化与性质。粗酶液经硫酸铵沉淀和Q-Sepharose FF离子交换层析即可得到电泳纯木聚糖酶,回收率为46.6%,比酶活为1396.9U/mg。该酶的最适pH和最适温度分别为pH7.0和75℃,pH稳定范围为5.5-10.8,70℃处理30min残存酶活在70%以上。薄层层析结果显示该酶水解桦木木聚糖的主要产物是木二糖和木三糖,并且能够通过转糖苷作用将木三糖转化为木二糖。该木聚糖酶易于纯化并且具有较宽的pH稳定性及良好的热稳定性,具有较大的潜在工业应用价值。  相似文献   

10.
An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular weight of F. pinicola xylanase was determined to be 58 kDa by sodium dodecylsulfate polyacrylamide gel electrophoresis and by size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of 70 degreesC. The enzyme showed t(1/2) value of 33 h at 70 degrees C and catalytic efficiency (k(cat) = 77.4 s?1, k(cat)/K(m) = 22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.  相似文献   

11.
耐冷皮壳正青霉一种木聚糖酶的纯化与性质研究   总被引:1,自引:0,他引:1  
研究了耐冷皮壳正青霉Eupenicillium crustaceum一种木聚糖酶的纯化和酶学性质。采用硫酸铵沉淀和阴离子交换层析的方法,从耐冷皮壳正青霉液体发酵液中分离纯化出一种亚基分子量35kDa的木聚糖酶。酶学性质研究表明,酶的最适pH值为5.5,在pH4.5-6.5范围内具有较高的催化活性。最适温度为50℃,20℃下酶活为最高酶活的40%。Ag+和Fe2+大幅度提高木聚糖酶的酶活,而Mn2+和Hg2+强烈抑制木聚糖酶的活性。同时,该木聚糖酶具有严格的底物特异性。  相似文献   

12.
Purification and characterization of xylanase from Aspergillus ficuum AF-98   总被引:1,自引:0,他引:1  
Lu F  Lu M  Lu Z  Bie X  Zhao H  Wang Y 《Bioresource technology》2008,99(13):5938-5941
The purification and characterization of xylanase from Aspergillus ficuum AF-98 were investigated in this work. The extracellular xylanase from this fungal was purified 32.6-fold to homogeneity throughout the precipitation with 50–80% (NH4)2SO4, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-100 chromatography. The purified xylanase (specific activity at 288.7 U/ mg protein) was a monomeric protein with a molecular mass of 35.0 kDa as determined by SDS-PAGE. The optimal temperature and pH for the action of the enzyme were at 45 °C and 5.0, respectively. The xylanase was activated by Cu2+ up to 115.8% of activity, and was strongly inhibited by Hg2+, Pb2+ up to 52.8% and 89%, respectively. The xylanase exhibited Km and Vmax values of 3.267 mg/mL, 18.38 M/min/mg for beechwood xylan and 3.747 mg/mL, 11.1 M/min/mg for birchwood xylan, respectively.  相似文献   

13.
A new xylanase activity (XynII) was isolated from liquid state cultures of Acrophialophora nainiana containing birchwood xylan as carbon source. XynII was purified to apparent homogeneity by gel filtration and ion exchange chromatographies. The enzyme was optimally active at 55 degrees C and pH 7.0. XynII had molecular mass of 22630+/-3.0 and 22165 Da, as determined by mass spectrometry and SDS-PAGE, respectively. The purified enzyme was able to act only on xylan as substrate. The apparent K(m) values on soluble and insoluble birchwood xylans were 40.9 and 16.1 mg ml(-1), respectively. The enzyme showed good thermal stability with half lives of 44 h at 55 degrees C and ca. 1 h at 60 degrees C The N-terminal sequence of XynII showed homology with a xylanase grouped in family G/11. The enzyme did not show amino acid composition similarity with xylanases from some fungi and Bacillus amyloliquefaciens.  相似文献   

14.
An extracellular xylanase produced by a cellulase-negative mutant strain of Streptomyces lividans 1326 was purified to homogeneity. The purified enzyme has an apparent Mr of 43,000 and pI of 5.2. The pH and temperature optima for the activity were 6.0 and 60 degrees C respectively, and the Km and Vmax. values, determined with a soluble oat spelts xylan, were 0.78 mg/ml and 0.85 mmol/min per mg of enzyme. The xylanase showed no activity towards CM-cellulose and p-nitrophenyl beta-D-xyloside. The enzyme degraded xylan, producing mainly xylobiose, a mixture of xylo-oligosaccharides and a small amount of xylose as end products. Its pattern of action on beta-1,4-D-xylan indicates that it is a beta-1,4-endoxylanase (EC 3.2.1.8).  相似文献   

15.
Summary The yeast-like fungusAureobasidium is a promising source of xylanase (EC 3.2.1.8) with an exceptionally high specific activity. For enzyme production in volumes of several liters, xylose was the preferred carbon source and inducer. Xylanase in clarified cultures was concentrated by reversible adsorption to cation-exchange matrix to 5% of the initial volume, and recovered at nearly 2 million IU/1. Selective conditions permitted 97% recovery of xylanase with a 1.8-fold enrichment in specific activity, to 70% of purity. The predominant xylanase species (20 kDa) was subsequently purified to >99% of homogeneity by gel filtration chromatography. Purified enzyme exhibited an isoelectric point of 8.5, and specific activity of 2100 IU/mg under optimal conditions, determined to be pH 4.5 and 45°C. The activity of purified enzyme was specific for polymeric xylan.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Dept. of Agirculture over other firms or similar products not mentioned.  相似文献   

16.
Purification and characterization of barley-aleurone xylanase   总被引:1,自引:0,他引:1  
Xylanase (-1,4-D-xylan xylanohydrolase; EC 3.2.1.8) from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was purified and characterized. Purification was by preparative isoelectric focusing and a Sephadex G-200 column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme showed a single protein band with an apparent molecular weight (Mr)=34000 daltons. The isoelectric point of the enzyme was 4.6. The enzyme had maximum activity on xylan at pH 5.5 and at 35° C. It was most stable between pH 5 and 6 and at temperatures between 0 and 4° C. The Km was 0.86 mg xylan·ml-1.Abbreviations GA3 gibberellic acid - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

17.
Abstract Alkali-tolerant Aspergillus fischeri Fxn1 produced two extracellular xylanases. The major xylanase ( M r 31000) was purified to electrophoretic homogeneity by ammonium sulfate precipitation, anion exchange chromatography and preparatory PAGE. Xylose was the major hydrolysis product from oat spelt and birch wood xylans. It was completely free of cellulolytic activities. The optimum pH and temperature were 6.0 and 60 °C, respectively. pH stability ranged from 5 to 9.5 and the t1 / 2 at 50 °C was 490 min. It had a K m of 4.88 mg ml−1and a V max of 588 μmol min−1 mg−1. The activity was inhibited (95%) by AlCl3 (10 mM). This enzyme appears to be novel and will be useful for studies on the mechanism of hydrolysis of xylan by xylanolytic enzymes.  相似文献   

18.
Streptomyces cyaneus SN32 was used in this study to produce extracellular xylanase, an important industrial enzyme used in pulp and paper industry. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by anion exchange chromatography using DEAE-Sepharose column, with 43.0% yield. The enzyme was found to be a monomer of 20.5 kDa as determined by SDS gel electrophoresis and has a pI of 8.5. The optimum pH and temperature for purified xylanase activity was 6.0 and 60-65 degrees C, respectively. The half-lives of xylanase at 50 and 65 degrees C were approximately 200 and 50 min, respectively. The xylanase exhibited K(m) and V(max) values of 11.1 mg/ml and 45.45 micromol/min/mg. The 15 residue N-terminal sequence of the enzyme was found to be 87% identical up to that of endoxylanases from Steptomyces sp. Based on the zymogram analysis, sequence similarity and other characteristics, it is proposed that the purified enzyme from S. cyaneus SN32 is an endoxylanase and belongs to Group 1 xylanases (low molecular weight - basic proteins). The purified enzyme was stable for more than 20 week at 4 degrees C. Easy purification from the fermentation broth and its high stability will be highly useful for industrial application of this endoxylanase.  相似文献   

19.
星天牛Anoplophora chinensis (Frster)幼虫肠道匀浆液经80%丙酮沉淀、Q-Sepharose阴离子交换柱层析、PAGE制备电泳等方法纯化后,获得在SDS-PAGE上呈现单一区带的木聚糖酶。该酶的分子量约25 kD,等电点约4.0,最适温度50℃,最适pH 5.4,pH 3.0~7.8对酶活性的恢复无大的影响, 50℃保温2 h仍有60%酶活性。Hg2+、MnO-4、变性剂SDS完全抑制该酶活性, Cu2+、Mn2+、Ag+、Zn2+、Pb+、脲对酶活性有强烈的抑制作用。该酶具有水解纤维素的交叉活性,其Km值为2.47 mg/mL,Vmax为0.6 IU/mL。  相似文献   

20.
A beta-xylanase (XynIII) of Acrophialophora nainiana was purified to homogeneity from the culture supernatant by ultrafiltration and a combination of ion exchange and gel filtration chromatographic methods. It was optimally active at 55 degrees C and pH 6.5. XynIII had molecular masses of 27.5 and 54 kDa, as estimated by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The purified enzyme hydrolyzed preferentially xylan as the substrate. The half-lives of XynIII at 50 and 60 degrees C were 96 and 1 h, respectively. It was activated by L-tryptophan, dithiothreitol, 5,5-dithio-bis(2-nitrobenzoic acid, L-cysteine and beta-mercaptoethanol and strongly inhibited by N-bromosuccinimide. The presence of carbohydrate was detected in the pure XynIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号