首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Centrifugal elutriation appears to be a promising method for cell separation. The quality of the separation may be limited by the control of temperature within the separation chamber, which affects the fluid viscosity and rotor speed. The factors affecting the temperature regulations have been re-examined. At flow rates between 10 and 40 mL/min the temperature within the chamber was primarily dependent on the temperature of the fluid flowing into the rotor. Increases in the temperature of the fluid while it flowed through the rotor were observed and were greater at higher rotor speeds and lower flow rates. This heating, caused by friction at the rotating seal, could raise the fluid temperature within the chamber by as much as 6 degrees C. Fluctuations in the temperature of the centrifuge produced temperature variations of only 0.3 degrees C in the fluid in the elutriation chamber. Small increases in the rate of elutriation of cells, concomitant with centrifuge cooling and speed fluctuations, were detected by optical density measurements. However, neither the modal volume nor coefficient of variation of the collected cells were affected.  相似文献   

2.
Centrifugal elutriation (CE) is currently a widely used preparative cell separation technique. In order to optimize the separation of cells that show only small differences in sedimentation velocity, several conditions that might influence the resolution capacity, such as rotor speed, counterflow, jetstream, cell load, density, and viscosity of the elutriation medium, were analyzed. Experiments carried out with human red blood cells (rbc) indicated that aselective losses of rbc from the rotor caused by the jetstream, could be prevented if the separations were carried out at high rotor speeds, as predicted by the theory. In addition, high cell loads (5×108 rbc) resulted in better separations than low cell loads (5×107 rbc). Human monocytes were separated into subpopulations that differed only about 0.003 g/mL in density, but have virtually the same size. The separation was carried out either by increasing the density or viscosity of the elutriation medium or by decreasing the rotor speed. In all cases similar results were obtained. These results indicated that under optimal conditions CE can be applied for the separation of cells that differ only slightly in sedimentation velocity.  相似文献   

3.
Summary Centrifugal elutriation (counterflow centrifugation) was used to develop a reproducible method for obtaining a nearly pure population of isolated alveolar type II cells. Lung was dissociated into individual cells with recrystallized trypsin, and the type II cells were partially purified by centrifugation on a discontinuous density gradient. The alveolar type II cells were finally purified by centrifugal elutriation. Cells were collected from the elutriator rotor by stepwise increases in flow rates. Cells obtained at flow rates of 7 and 14 ml per min were lymphocytes, other small cells, a few type II cells and cell debris; cells collected at flow rates of 18 and 22 ml per min were mainly type II cells; and cells collected at flow rates of 28, 34 and 43 ml per min were macrophages, some type II cells, other lung cells and cell aggregates. At flow rates of 18 and 22 ml per min, 1.9±1.0×106 cells per rat lung (mean±S.D.,n=30) were recovered of which 86±6% were type II cells. At these flow rates, 94% of the cells excluded the vital dye erythrosin B from their cytoplasm. They consumed oxygen at a rate of 101±21 nmol per hr·106 cells (mean±S.D.,n=4), and their oxygen consumption increased only 10% after 10mm sodium succinate was added. The cells incorporated [14C]leucine into protein and lipid for 4 hr. Electron micrographs of the cells collected at flow rates of 18 and 22 ml per min show a high percentage of morphologically intact alveolar type II cells. We conclude that centrifugal elutriation is a reproducible method for obtaining nearly pure, metabolically active alveolar type II cells. Postdoctoral trainee supported by Grants HL-05251 and HL-07192 from the National Heart, Lung and Blood Institute. This work was supported by U.S. Public Health Service Grants Program-Project HL-06285 and Pediatric Pulmonary SCOR HL-19185, and by a grant-in-aid from the American Heart Association (77-1098).  相似文献   

4.
The role of fluid flow in the elutriation process was visualized by pumping dye solution through the Beckman JE-6 elutriator rotor. Three major fluid flow disturbances were observed in the separation chambers, namely; jet-streaming, ripple flow, and whirl flow. In order to evaluate the effects of these non-ideal fluid flow patterns on the separation of homogeneous populations of particles or cells, 12–35 μm diameter latex spheres and 9L rat brain tumor cells were fractionated with the Beckman elutriator system. The elutriator system was evaluated on the basis of: (1) recovery, (2) elution loss during loading, (3) homogeneity of the size distributions, and (4) the relationship of the median volume of eluted particles or cells to the rotor speed and the collection fluid velocity. Both a conventional collection method (two 40-mL fractions at each collection rotor speed) and a long collection method (10–15 40-mL fractions at several collection rotor speeds) were compared to determine if collection procedures could compensate for some of the difficulties caused by the non-ideal fluid flow patterns. Although more than 90% of the particles or cells were always recovered, about 5% eluted during the loading procedure. Neither collection method altered this phenomenon. The collected populations, but this was accompanied by a reduction in cell yield. The median particle or cell volume of each fraction agreed with that expected under ideal fluid flow conditions except at high and low rotor speeds when the conventional collection method was used.  相似文献   

5.
A collection procedure has been developed to improve the homogeneity of mammalian spermatid populations separated by elutriation. Trypsinizied ram testis cells were elutriated at 18C. Every cell population was eluted by progressive changes in the flow rate and/or rotor speed, instead of by abrupt changes, to reduce the contamination by cells from the next population. Pure populations were collected alternating with mixed populations corresponding to the overlap between two adjacent pure populations. Furthermore, each pure population was collected into two subfractions, the second of which, contamined by cells from the following population, was pooled with the following fraction. In less than 2 hr after castration, three populations of at least 1 × 108 viable round or elongated or elongating spermatids were obtained with respective purities of 95%, 82%, and 99% of the nucleated cells. In addition, two mixed populations containing only two adjacent spermatid types (round plus elongating spermatids: 98%; elongated plus elongating spermatids: 98%) were obtained, as well as a population containing around 60% pachytene spermatocytes.  相似文献   

6.
Cell separation using the Beckman elutriator depends upon the flow rate of the medium and the centrifugal field employed. Changes in either the centrifugal field or the flow rate can be used to elute fractions of cells based on size. Even when these variables are held constant in the Beckman J21C centrifuge, a periodic pulse of cells is eluted. We have found that this anomolous elution is related to the temperature control system which gave a periodically pulsed temperature drop in the centrifuge well. The elution resulting from this change in temperature caused a shift in the modal cell size of the fraction eluted at a particular flow rate and centrifugal field. Because of this, the fractions have a larger size dispersion than fractions collected under conditions where refrigeration-related temperature fluctuations do not occur. We conclude that the temperature control system of the Beckman J21C centrifuge used with the Beckman elutriation rotor produces temperature fluctuations which prevent maximum resolution of cells.  相似文献   

7.
Isolated rat peritoneal mast cells actively secrete histamine in response to reaginic or chemical stimulation. Mast cells were irradiated in a waveguide microwave exposure chamber at 2450 MHz with power absorptions of 8.2 and 41.0 mW/g for periods up to 3 h. These levels of microwave absorption caused no change in the morphological characteristics or viability of the cells. Irradiated mast cells were stimulated with compound 48/80, a potent, noncytotoxic histamine releasing agent. The dose response curves showed that neither prior nor simultaneous irradiation of mast cells at 37°C affected 48/80-induced secretion. However, microwave power absorptions of 41.0 mW/g inhibited secretion at 44.0°C. Precise measurements of the effect of heat on secretion indicated that this level of inhibition could have been produced by a radiation induced increase in cell temperature between 0.4 and 0.9°C above ambient levels. Alternatively, the heat stress produced at 44°C may have sensitized the cells to the electromagnetic effects of the microwave radiation. Rat peritoneal mast cells can therefore be useful as a model for the study of functioning secretory cells during microwave irradiation and can also be used to monitor the synergistic effects of cell heating during in vitro exposure.  相似文献   

8.
The role of fluid flow in the elutriation process was visualized by pumping dye solution through the Beckman JE-6 elutriator rotor. Three major fluid flow disturbances were observed in the separation chambers, namely; jet-streaming, ripple flow, and whirl flow. In order to evaluate the effects of these non-ideal fluid flow patterns on the separation of homogeneous populations of particles or cells, 12--35 micron diameter latex spheres and 9L rat brain tumor cells were fractionated with the Beckman elutriator system. The elutriator system was evaluated on the basis of: (1) recovery, (2) elution loss during loading, (3) homogeneity of the size distributions, and (4) the relationship of the median volume of eluted particles or cells to the rotor speed and the collection fluid velocity. Both a conventional collection method (two 40-mL fractions at ech collection rotor speed) and a long collection method (10--15 40-mL fractions at several collection rotor speeds) were compared to determine if collection procedures could compensate for some of the difficulties caused by the non-ideal fluid flow patterns. Although more than 90% of the particles or cells were always recovered, about 5% eluted during the loading procedure. Neither collection method altered this phenomenon. The long collection method significantly improved the homogeneity of the collected populations, but this was accompanied by a reduction in cell yield. The median particle or cell volume of each fraction agreed with that expected under ideal fluid flow conditions except at high and low rotor speeds when the conventional collection method was used.  相似文献   

9.
Summary To simplify the isolation of neutrophils, we developed a one-step procedure using elutriation. The perfusate (0.2% gelatin and 0.1% glucose in phosphate buffered saline) was pumped through an elutriator rotor at 4 ml/min (25° C) with the rotor speed at 2370 rpm. Twenty milliliters of anticoagulated porcine venous blood were mixed with 60 ml of perfusate and loaded into the elutriator chamber. The flow rate was increased by 2 ml/min increments and 100-ml fractions of effluent were collected at each increment. Concentrations of neutrophils and mononuclear cells were measured in each fraction, and the percentage of total neutrophils or mononuclear cells was plotted against flow rate. The optimal yield (46%) and purity (95.1%) of neutrophils (n=8) was obtained in pooled fractions at flow rates greater than 20 ml/min. Neutrophils in this preparation were round, the granules were intact, and the nuclei were lobulated. In addition, the cells produced superoxide in the presence of phorbol myristate acetate and phagocytosed zymosan particles. These characteristics were similar to those of porcine neutrophils prepared by a conventional sedimentation method. The yield (43%) and purity (94%) of human neutrophils isolated using the elutriator method was similar to that for porcine cells. This one-step method provides a moderate yield of pure neutrophils that have retained their morphology and function. This work was supported by the Canadian Heart Foundation.  相似文献   

10.
Centrifugal elutriation (CE) is currently a widely used preparative cell separation technique. In order to optimize the separation of cells that show only small differences in sedimentation velocity, several conditions that might influence the resolution capacity, such as rotor speed, counterflow, jetstream, cell load, density, and viscosity of the elutriation medium, were analyzed. Experiments carried out with human red blood cells (rbc) indicated that selective losses of rbc from the rotor caused by the jetstream, could be prevented if the separations were carried out at high rotor speeds, as predicted by the theory. In addition, high cell loads (5 X 10(8) rbc) resulted in better separations than low cell loads (5 X 10(7) rbc). Human monocytes were separated into subpopulations that differed only about 0.003 g/mL in density, but have virtually the same size. The separation was carried out either by increasing the density or viscosity of the elutriation medium or by decreasing the rotor speed. In all cases similar results were obtained. These results indicated that under optimal conditions CE can be applied for the separation of cells that differ only slightly in sedimentation velocity.  相似文献   

11.
A new method using centrifugal elutriation for subcellular fractionation of plant cells has been developed. This method takes advantage of the fact that particles sedimenting in a gravitational field can be eluted by flow against the field. A wheat protoplast homogenate was fed into an elutriation rotor spinning at high speed and the flow rate into the rotor was gradually increased. The smaller and less dense materials such as mitochondria, microbodies, endoplasmic reticulum, and cytoplasm were elutriated earlier than the larger and denser nuclei and chloroplasts. The intact chloroplasts, free of mitochondria, microbodies, endoplasmic reticulum, and cytoplasm, could be obtained within 40 min following the rupture of protoplasts. The chlorophyll-free mitochondria could be obtained within 80 min.  相似文献   

12.
Larvae of the elm bark beetle, Scolytus scolytus, were inoculated with conidia of the entomogenous fungi Beauveria bassiana (two strains), Metarhizium anisopliae (two strains), and Paecilomyces farinosus (two strains) and incubated over a range of temperatures (2°, 6°, 10°, 15°, and 20°C). One strain each of B. bassiana and P. farinosus caused infection even at 2°C, whereas the two strains of M. anisopliae caused no infection below 10°C. Infection of adult beetles by B. bassiana (one strain) and M. anisopliae (one strain) was tested at 15°, 20°, and 25°C (B. bassiana) and at 15° and 20°C (M. anisopliae). Fungal infection occurred at all three temperatures, but at 25°C beetles tended to succumb to bacterial infection. The effect of relative humidity on infection of larvae by B. bassiana (one strain), M. anisopliae (one strain), and P. farinosus (one strain) was tested at 51, 74, 86, 90, 95, 97.5, and 100% relative humidity. B. bassiana and M. anisopliae caused some infection at all humidities: with P. farinosus there was no infection at the two lowest humidities. Mortality due to infection by these fungi was most rapid at the highest humidities.  相似文献   

13.
Dielectrophoretic separation of cells: Continuous separation   总被引:2,自引:0,他引:2  
Dielectrophoresis is the movement of particles in non-uniform alternating and direct current (AC, DC) electric fields. When nonuniform electric fields are created between microelectrodes, cells will redistribute themselves around the electrodes, the force holding the cells in place dependig on the local electric field and on the electrical properties of the cells themselves and the suspending medium. Steric drag forces produced by a gentle fluid flow in the chamber can be used to separate cells by selectively lifting cells from potential energy wells produced by the electric field. The technique is demonstrated in the batch separation of bacteria, yeast cells, and plant cells. Continuous separation and extraction of two cell types can be achieved by repeated reversing of the fluid flow direction in phase with the switching on and off of the applied voltage, and the efficacy of the technique is demonstrated for viable and nonviable (heat-treated) yeast cells. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
The rate of extraction of triacylglycerols with supercritical carbon dioxide can be greatly enhanced by raising the pressure of the fluid to 600 bar, or higher, and its temperature to 60°C, or higher. Both the amount of carbon dioxide and the time required for complete extraction are reduced at such high pressures and temperatures.  相似文献   

15.
Enantiomeric separations of six amino‐acid derivatives have been studied using packed‐column supercritical fluid chromatography with two polysaccharide‐based enantioselective stationary phases: cellulose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(3‐chloro‐4‐methylphenylcarbamate) (Lux Cellulose‐1 and ‐2). The effect of analyte structure on retention and separation was studied. Varied mobile phase compositions were investigated: alcohol modifier percentage was increased from 3 to 40% but smaller amounts were most effective in separating these compounds. Besides, ethanol was preferred to methanol or isopropanol as it proved to be a good compromise to achieve sufficient resolution in a reasonable analysis time. Moreover, a carbon dioxide‐ethanol mixture allows performing analyses in safe and green conditions. The effect of temperature at constant mobile phase composition was explored between 10 and 40°C. In most cases, increasing the temperature improved the chiral separation, up to an optimum temperature. The results are discussed in line with the structure variation of the racemic derivatives analyzed and the two columns are compared. The two columns were shown to provide complementary selectivities for the investigated solutes: whereas Lux 1 provided separation for five of the six racemates, Lux 2 could resolve the last racemic mixture. Finally, optimized conditions of separation are defined. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
ABSTRACT. Four methods are commonly used to study cell cycle processes in Paramecium tetraurelia. These include stage frequency analysis in asynchronous cultures, hand selection of synchronous dividing cells, selection of newly divided cells by elutriation centrifugation, and the sister cell method. We have compared the timing and resolution of stages of oral morphogenesis and micronuclear mitosis with each method. The temporal resolution obtainable with the sister cell method was inadequate to position the timing of morphogenesis stages within the cell cycle. Both the asynchronous method and the hand-selected synchronous samples methods are prone to bias. Elutriation centrifuge synchronization provides large samples with resolution comparable to that of hand selected samples. The elutriation method is the least prone to bias when <5% of the parent culture of Paramecium is selected.  相似文献   

17.
An improved method for the isolation of type II and clara cells from mice   总被引:4,自引:0,他引:4  
Identifying the causal events and temporal aspects of lung cancer development requires the ability to isolate target and nontarget cells for comparative analyses. Current methodology can either isolate only one pure specific cell population from a lung or multiple cell types at lower purity. Previous studies in our laboratory have identified the alveolar type II cell as the progenitor cell for tumor development in the A/J mouse. The purpose of this study was to develop new protocols for the isolation and culture of type II and Clara cells from the mouse lung. Both type II and Clara cells were obtained in high purity using a sequential centrifugal elutriation protocol. In the first elutriation, cell fractions were collected using a Standard chamber. The type II and Clara cell fractions were then elutriated separately (two different separations) using a Sanderson chamber. The final purity of the type II and Clara cell preparations was 73% and 76%, respectively. Colonies of 4 to 20 Clara cells exhibiting epithelial morphology were evident 1 wk after plating in low serum medium. The growth of type II cells required the addition of bronchioalveolar lavage fluid and acidic fibroblast growth factor to the medium. The isolation of viable mouse type II and Clara cells in high purity should facilitate the identification of cell-specific changes in gene expressions or in enzymatic pathways following in vivo or in vitro exposure to environmental carcinogens.  相似文献   

18.
Centrifugal elutriation (counterflow centrifugation) was used to develop a reproducible method for obtaining a nearly pure population of isolated alveolar type II cells. Lung was dissociated into individual cells with recrystallized trypsin, and the type II cells were partially purified by centrifugation on a discontinuous density gradient. The alveolar type II cells were finally purified by centrifugal elutriation. Cells were collected from the elutriator rotor by stepwise increases in flow rates. Cells obtained at flow rates of 7 and 14 ml per min were lymphocytes, other small cells, a few type II cells and cell debris; cells collected at flow rates of 18 and 22 ml per min were mainly type II cells; and cells collected at flow rates of 28, 34 and 43 ml per min were macrophages, some type II cells, other lung cells and cell aggregates. At flow rates of 18 and 22 ml per min, 1.9 +/- 1.0 x 10(6) cells per rat lung (mean +/- S.D., n=30) were recovered of which 86 +/- 6% were type II cells. At these flow rates, 94% of the cells excluded the vital dye erythrosin B from their cytoplasm. They consumed oxygen at a rate of 101 +/- 21 nmol per hr . 10(6) cells (mean +/- S.D., n=4), and their oxygen consumption increased only 10% after 10 mM sodium succinate was added. The cells incorporated [14C]leucine into protein and lipid for 4 hr. Electron micrographs of the cells collected at flow rates of 18 and 22 ml per min show a high percentage of morphologically intact alveolar type II cells. We conclude that centrifugral elutriation is a reproducible method for obtaining nearly pure, metabolically active alveolar type II cells.  相似文献   

19.
Cell division rate, carbon fixation per cell, cell width and chloroplast length of Phaeodactylum tricornutum Bohlin were determined at 30 different combinations of light intensity and temperature. Division rate peaked at 23° C or less depending on light intensity. For each light intensity studied, carbon fixation increased directly with growth temperature from 14 to 25° C. The slope of this relationship was modified by light intensity. Cells grown at 23–25° C tended to be larger than those grown at lower temperatures, possibly due to increased carbon fixation per cell coupled with lower division rates. Chloroplasts were largest at a combination of temperatures above 21° C and low light intensities. This effect could cause cells to sink at a higher than normal rate due to reduced vacuole size and is presented as a possible mechanism affecting the distribution of P. tricornutum.  相似文献   

20.
A new method of sedimentation analysis of human blood leukocytes is described. Platelets, lymphocytes, monocytes, and polymorphonuclear cells isolated from normal human peripheral blood have been analyzed alone and in mixture by gravity sedimentation employing a computerized scanning instrument. All four classes could be clearly resolved from each other exhibiting sedimentation velocities of 0.6 ± 0.00, 1.04 ± 0.11, 1.27 ± 0.15 and 1.89 ± 0.21 · 10?4 cm/s, respectively, at 37°C in a 2.5–6.25% Ficoll gradient in Medium 199. Less than 106 cells can be used for analysis. Possible applications of the method are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号