首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
BACKGROUND: The recently developed tissue microarray (TMA) technology allows the arrangement of up to a thousand tissue specimens on a single microscope slide. This technology enables researchers to perform gene copy number studies on very large series of archival formalin-fixed tissues using fluorescence in situ hybridization (FISH). However, the hybridization properties of individual archival specimens can vary considerably. Therefore a highly optimized protocol is needed to fulfill the task of producing evaluable hybridization signals simultaneously in hundreds of specimens in a TMA. METHODS: The performance of two different FISH protocols, the standard protocol for paraffin embedded tissues and our new optimized protocol, was tested on TMAs using probes for the HER-2 and ZNF217 genes as well as the chromosome 17 centromere. RESULTS: The new protocol resulted in greatly increased signal intensity and an almost 30% increase in the number of tissue samples with evaluable hybridization signals. CONCLUSIONS: Our improved protocol for FISH on TMAs provides standardized hybridization conditions leading to high-quality hybridization signals in the majority of specimens. The increases in the signal intensity and the number of evaluable samples are extremely important for the successful analyses of TMAs by FISH and will allow the utilization of the TMA technology in its full potential.  相似文献   

2.
Oligonucleotides synthesized in array format suffer from contamination by truncated species. We have developed a method to invert DNA molecules in situ after completed synthesis. Reactive functions at the 5'-ends of the oligonucleotides are permitted to react with functions on the support before the 3'-ends are released, in effect reversing the orientation of full-length oligonucleotides, while any 5'-truncated molecules are lost. This strategy serves both to purify in situ synthesized reagents and to reorient the oligonucleotides, causing them to expose free 3'-hydroxyls. In situ inverted oligonucleotides can be used in assays based on DNA polymerase-assisted extension of immobilized primers, and we demonstrate their utility in minisequencing and in pyrosequencing.  相似文献   

3.
Tissue microarrays: emerging standard for biomarker validation   总被引:1,自引:0,他引:1  
With the widespread use of DNA microarrays, hundreds of biomarkers are in need of validation in cohorts of well-annotated clinical samples. Tissue microarrays are emerging as the tool par excellence to rapidly perform DNA, RNA, and especially protein expression analyses on large numbers of clinical samples. Although still somewhat limited by the subjectivity of scoring methods and tissue sample representativeness, TMAs represent an increasingly validated means of understanding the clinical impact of diagnostic-related, prognostic-related, and therapy-related markers. Automated methods are being developed for TMA analysis and cell microarrays and frozen tissue TMAs have been better optimized. More and more biomarker studies are availing themselves of the high-throughput nature of TMAs, recognizing that they are becoming indispensable for rapid translation of laboratory data to the clinic.  相似文献   

4.
A simple, rapid, high-yield, and relatively inexpensive procedure for the preparation of estradiol 17beta-hemisuccinate is described. The synthesis can be done conveniently in the ordinary biological laboratory.  相似文献   

5.
6.
A simplified and economical method for the attachment of 2'-deoxyribo, ribo and arabinonucleosides onto long-chain alkylamidopropanoic acid controlled-pore glass (LCAAP-CPG, P-3) is described. In this procedure, 5'-O-tritylated nucleosides are coupled directly to LCAAP-CPG in excellent yields using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (DEC) as coupling reagent. The conventional and time-consuming preparation of nucleoside-3'-O-succinates is no longer required.  相似文献   

7.
A procedure is described which provides high yields of pyridylethylated cysteine during gas-phase sequencing of peptides. The method decreases transfer losses by reducing the number of transfer steps required for reduction, alkylation, prior to sequencing a peptide. Proteins bound to polybrene-coated glass-fiber filters used in a gas-phase sequenator may be reduced, pyridylethylated, and sequenced directly on the filter. Reduction of cystine-containing peptides is performed using the nonnucleophilic reductant, tributylphosphine [U. T. Rüegg and J. Rudinger (1977) in Methods in Enzymology (Hirs, C. H. W., and Timasheff, S. N., Eds.), Vol. 47, pp. 111-116, Academic Press, New York] with concomitant alkylation by 4-vinylpyridine in a buffer soluble in the organic phase. Excess reagents and the buffer are removed by drying the filter and briefly washing with chlorobutane. No N-alkylation is apparent under the conditions described, nor are any amino acid side chains modified. The procedure affords high yields and is particularly useful when subnanomole levels of material must be reduced and alkylated.  相似文献   

8.
In preparation for gene transfer experiments we investigated factors that might affect the production of shoots and somatic embryos from the wound callus of cultured sugarbeet leaf discs. A complex interaction was found between the leaf disc plating density, the disc culture medium, the source-shoot culture medium and the frequency of disc transfer to fresh medium. The most productive protocol utilized: source shoots maintained on MS medium containing 0.25 mg 1-1 BA; multiple leaf discs (ten 4-mm discs/plate) plated onto an enriched modification of MS medium (RV) containing 1.0 mg 1-1 BA and solidified with 0.3% Gelrite (not permitted to dry during hardening); and transfer of the discs to fresh medium every two weeks during the first month. This standard protocol produced more callus per plate and higher rates of morphogenesis per unit dry weight of callus than did the one-step method of Saunders and Doley. Water availability considerations were found to be critical to obtaining high morphogenic rates. Root induction frequency and quality was superior on shoots transplanted to MS medium containing 1 mg 1-1 NAA as the sole growth regulator compared to IAA at the same concentration.Abbreviations BA N6-benzyladenine - IAA indole-3-acetic acid - NAA -naphthaleneacetic acid  相似文献   

9.
10.
G Speit  S Haupter  S Pentz 《Cytobios》1990,62(248):39-44
A method for the cultivation of monolayer cell cultures on microslides in quadruple culture dishes together with a simple procedure for in situ chromosome preparation are described. The cells fixed to the slide can be stained according to standard procedures and analysed microscopically. The method is simple, rapid and reliable and provides many advantages especially for cytogenetic diagnostics with fibroblasts and amniotic fluid cells. It simplifies the performance of cytogenetic mutagenicity testing with primary cultures and permanent cell lines, e.g. the analysis of chromosome aberrations, sister chromatid exchanges (SCEs) and induced aneuploidy, as well as large-scale cytogenetic experiments.  相似文献   

11.
Tissue microarray (TMA) technology has provided a high throughput means of evaluating potential biomarkers and therapeutic targets in archival pathological specimens. TMAs facilitate the rapid assessment of molecular alterations in hundreds of different tumours on a single slide. Sections from TMAs can be used for any in situ tissue analysis, including fluorescent in situ hybridization (FISH). FISH is a molecular technique that detects numerical and structural abnormalities in both metaphase chromosomes and interphase nuclei. FISH is commonly used as a prognostic and diagnostic tool for the detection of translocations and for the assessment of gene deletion and amplification in tumours. Performing FISH on TMAs enables researchers to determine the clinical significance of specific genetic alterations in hundreds of highly characterized tumours. The use of FISH on archival paraffin embedded tissues is technically demanding and becomes even more challenging when applied to paraffin embedded TMAs. The problems encountered with FISH on TMAs, including probe preparation, hybridization, and potential applications of FISH, will be addressed in this review.  相似文献   

12.
In the course of exploring the hybridization properties of glass DNA microarrays, multi-stranded DNA structures were observed that could not be accounted for by classical Watson-Crick base pairing. Non-denatured double-stranded DNA array elements were shown to hybridize to single-stranded (ss)DNA probes. Similarly, ssDNA array elements were shown to bind duplex DNA probes. This led to a series of experiments demonstrating the formation of multi-stranded DNA structures on the surface of microarrays. These structures were observed with a number of heterogeneous sequences, including both purine and pyrimidine bases, with shared sequence identity between the ssDNA and one of the duplex strands. Furthermore, we observed a strong binding preference near the ends of duplexes containing a 3'-homologous strand. We suggest that such binding interactions on cationic solid surfaces could serve as a model for a number of biological processes mediated through multi-stranded DNA.  相似文献   

13.
In protein microarray performance, the choice of an appropriate surface is a crucial factor. Three‐dimensional substrates like nitrocellulose are known to have higher binding capacities than planar surfaces. Furthermore, they can enable the immobilization of proteins in a functional manner. One disadvantage of today's nitrocellulose‐based microarrays is the high background fluorescence, which can interfere with the detection of low‐abundance proteins. We have developed an innovative black nitrocellulose membrane‐based protein microarray that exhibits low autofluorescence in combination with increased sensitivity and improved LOD (limit of detection). The applicability of the novel material was demonstrated with main focus on reversed‐phase microarray experiments. In comparison to various commercially available microarrays, a higher sensitivity in regard to the spotted protein was achieved. In contrast to other porous nitrocellulose‐based microarrays, the black nitrocellulose provides a significant lower autofluorescence and background intensity.  相似文献   

14.
Successful use and reliability of microarray technology is highly dependent on several factors, including surface chemistry parameters and accessibility of cDNA targets to the DNA probes fixed onto the surface. Here, we show that functionalisation of glass slides with homemade dendrimers allow production of more sensitive and reliable DNA microarrays. The dendrimers are nanometric structures of size-controlled diameter with aldehyde function at their periphery. Covalent attachment of these spherical reactive chemical structures on amino-silanised glass slides generates a reactive ~100 Å layer onto which amino-modified DNA probes are covalently bound. This new grafting chemistry leads to the formation of uniform and homogenous spots. More over, probe concentration before spotting could be reduced from 0.2 to 0.02 mg/ml with PCR products and from 20 to 5 µM with 70mer oligonucleotides without affecting signal intensities after hybridisation with Cy3- and Cy5-labelled targets. More interestingly, while the binding capacity of captured probes on dendrimer-activated glass surface (named dendrislides) is roughly similar to other functionalised glass slides from commercial sources, detection sensitivity was 2-fold higher than with other available DNA microarrays. This detection limit was estimated to 0.1 pM of cDNA targets. Altogether, these features make dendrimer-activated slides ideal for manufacturing cost-effective DNA arrays applicable for gene expression and detection of mutations.  相似文献   

15.
The rapid development of genomics and proteomics requires accelerated improvement of the microarrays density, multiplexing, readout capabilities and cost-effectiveness. The bead arrays are increasingly attractive because of their self-assembly-based fabrication, which alleviates many problems of top-down microfabrication. Here we present a simple, reliable, robust and modular technique for the fabrication of bead microarrays, which combines the directed assembling of beads in microstructures and PDMS-based replica molding. The beads are first self-assembled in pyramidal microwells fabricated by anisotropic etching of silicon substrates, then transferred on the apex of PDMS pyramids that replicate the silicon microstructures. The arrays are chemically and biochemically robust; they are spatially addressable and have the potential for being informationally addressable; and they appear to offer better readout capabilities than the classical microarrays.  相似文献   

16.
17.
MOTIVATION: Expressed sequence tag (EST) data reflects variation in gene expression, but previous methods for finding coexpressed genes in EST data are subject to bias and vastly overstate the statistical significance of putatively coexpressed genes. RESULTS: We introduce a new method (LNP) that reports reasonable p-values and also detects more biological relationships in human dbEST than do previous methods. In simulations with human dbEST library sizes, previous methods report p-values as low as 10(-30) on 1/1000 uncorrelated pairs, while LNP reports significance correctly. We validate the analysis on real human genes by comparing coexpressed pairs to gene ontology annotations and find that LNP is more sensitive than the three previous methods. We also find a small but statistically significant level of coexpression between interacting proteins relative to randomized controls. The LNP method is based on a log-normal prior on the distribution of expression levels.  相似文献   

18.
Carbohydrate-protein interactions play important biological roles in biological processes. But there is a lack of high-throughput methods to elucidate recognition events between carbohydrates and proteins. This paper reported a convenient and efficient method for preparing oligosaccharide microarrays, wherein the underivatized oligosaccharide probes were efficiently immobilized on aminooxyacetyl functionalized glass surface by formation of oxime bonding with the carbonyl group at the reducing end of the suitable carbohydrates via irreversible condensation. Prototypes of carbohydrate microarrays containing 10 oligosaccharides were fabricated on aminooxyacetyl functionalized glass by robotic arrayer. Utilization of the prepared carbohydrate microarrays for the characterization of carbohydrate-protein interaction reveals that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. The limit of detection (LOD) for lectin ConA on the fabricated carbohydrate microarrays was determined to be approximately 0.008 microg/mL. Inhibition experiment with soluble carbohydrates also demonstrated that the binding affinities of lectins to different carbohydrates could be analyzed quantitatively by determining IC(50) values of the soluble carbohydrates with the carbohydrate microarrays. This work provides a simple procedure to prepare carbohydrate microarray for high-throughput parallel characterization of carbohydrate-protein interaction.  相似文献   

19.
We describe a cross-correlation procedure for removing contaminating electrocardiogram (ECG) complexes from the diaphragmatic electromyogram (EMGdi). First, the operator selects ECG templates from the EMGdi signal during expiratory intervals. Second, these templates are used to locate ECG complexes occurring during inspiratory EMGdi activity. Third, at the point of maximum correlation between the template and these ECG complexes, the template is adjusted in size and offset to "match" the ECG complex, and adjustments are determined by the linear regression coefficients. Finally, the modified template is subtracted from the EMGdi signal. To evaluate our method, we compared the power spectral density (PSD) obtained from processing EMGdi signals by our method with those obtained from the EMGdi signal in which ECG complexes had been removed by gating. Our results indicate that PSD obtained by these two different methods shows no statistically significant differences with respect to the following features: centroid frequency, median frequency, total power, standard deviation, skewness, and kurtosis.  相似文献   

20.
The widespread use of DNA microarrays has led to the discovery of many genes whose expression profile may have significant clinical relevance. The translation of this data to the bedside requires that gene expression be validated as protein expression, and that annotated clinical samples be available for correlative and quantitative studies to assess clinical context and usefulness of putative biomarkers. We review two microarray platforms developed to facilitate the clinical validation of candidate biomarkers: tissue microarrays and reverse-phase protein microarrays. Tissue microarrays are arrays of core biopsies obtained from paraffin-embedded tissues, which can be assayed for histologically-specific protein expression by immunohistochemistry. Reverse-phase protein microarrays consist of arrays of cell lysates or, more recently, plasma or serum samples, which can be assayed for protein quantity and for the presence of post-translational modifications such as phosphorylation. Although these platforms are limited by the availability of validated antibodies, both enable the preservation of precious clinical samples as well as experimental standardization in a high-throughput manner proper to microarray technologies. While tissue microarrays are rapidly becoming a mainstay of translational research, reverse-phase protein microarrays require further technical refinements and validation prior to their widespread adoption by research laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号