共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity 总被引:1,自引:0,他引:1
下载免费PDF全文

Page F Altabe S Hugouvieux-Cotte-Pattat N Lacroix JM Robert-Baudouy J Bohin JP 《Journal of bacteriology》2001,183(10):3134-3141
Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host. 相似文献
2.
Subset of hybrid eukaryotic proteins is exported by the type I secretion system of Erwinia chrysanthemi
下载免费PDF全文

Palacios JL Zaror I Martínez P Uribe F Opazo P Socías T Gidekel M Venegas A 《Journal of bacteriology》2001,183(4):1346-1358
Erwinia chrysanthemi exports degradative enzymes by using a type I protein secretion system. The proteases secreted by this system lack an N-terminal signal peptide but contain a C-terminal secretion signal. To explore the substrate specificity of this system, we have expressed the E. chrysanthemi transporter system (prtDEF genes) in Escherichia coli and tested the ability of this ABC transporter to export hybrid proteins carrying C-terminal fragments of E. chrysanthemi protease B. The C terminus contains six glycine-rich repeated motifs, followed by two repeats of the sequences DFLV and DIIV. Two types of hybrid proteins were assayed for transport, proteins with the 93-residue-protease-B C terminus containing one glycine-rich repeat and both hydrophobic terminal repeats and proteins with the 181-residue C terminus containing all repeat motifs. Although the shorter C terminus is unable to export the hybrids, the longer C terminus can promote the secretion of hybrid proteins with N termini as large as 424 amino acids, showing that the glycine-rich motifs are required for the efficient secretion of these hybrids. However, the secretion of hybrids occurs only if these proteins do not carry disulfide bonds in their mature structures. These latter results suggest that disulfide bond formation can occur prior to or during the secretion. Disulfide bonds may prevent type I secretion of hybrids. One simple hypothesis to explain these results is that the type I channel is too narrow to permit the export of proteins with secondary structures stabilized by disulfide bonds. 相似文献
3.
SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins 总被引:8,自引:1,他引:8
Replication of Salmonella typhimurium in host cells depends in part on the action of the Salmonella Pathogenicity Island 2 (SPI-2) type III secretion system (TTSS), which translocates bacterial effector proteins across the membrane of the Salmonella-containing vacuole (SCV). We have shown previously that one activity of the SPI-2 TTSS is the assembly of a coat of F-actin in the vicinity of bacterial microcolonies. To identify proteins involved in SPI-2 dependent actin polymerization, we tested strains carrying mutations in each of several genes whose products are proposed to be secreted through the SPI-2 TTSS, for their ability to assemble F-actin around intracellular bacteria. We found that strains carrying mutations in either sseB, sseC, sseD or spiC were deficient in actin assembly. The phenotypes of the sseB-, sseC- and sseD- mutants can be attributed to their requirement for translocation of SPI-2 effectors. SpiC was investigated further in view of its proposed role as an effector. Transient expression of a myc::SpiC fusion protein in Hela cells did not induce any significant alterations to the host cell cytoskeleton, and failed to restore actin polymerization around intracellular spiC- mutant bacteria. However, the same protein did complement the mutant phenotype when expressed from a plasmid within bacteria. Furthermore, spiC was found to be required for SPI-2 mediated secretion of SseB, SseC and SseD in vitro. An antibody against SpiC detected the protein on immunoblots from total cell lysates of S. typhimurium expressing SpiC from a plasmid, but it was not detected in secreted fractions after exposure of cells to conditions that result in secretion of other SPI-2 effector proteins. Investigation of the trafficking of SCVs containing a spiC- mutant in macrophages revealed only a low level of association with the lysosomal marker cathepsin D, similar to that of wild-type bacteria. Together, these results show that SpiC is involved in the process of SPI-2 secretion and indicate that phenotypes associated with a spiC- mutant are caused by the inability of this strain to translocate effector proteins, thus calling for further investigation into the function(s) of this protein. 相似文献
4.
Cellular components necessary for osmoprotection are poorly known. In this study we show that O antigen is specifically required for the effectiveness of betaines as osmoprotectants for Erwinia chrysanthemi in saline media. The phenotype is correlated with the inability of rfb mutant strains to maintain a high accumulation level of betaines in hypersaline media. 相似文献
5.
Rojas CM Ham JH Schechter LM Kim JF Beer SV Collmer A 《Molecular plant-microbe interactions : MPMI》2004,17(6):644-653
Erwinia chrysanthemi is a host-promiscuous plant pathogen that possesses a type III secretion system (TTSS) similar to that of the host-specific pathogens E. amylovora and Pseudomonas syringae. The regions flanking the TTSS-encoding hrp/hrc gene clusters in the latter pathogens encode various TTSS-secreted proteins. DNA sequencing of the complete E. chrysanthemi hrp/hrc gene cluster and approximately 12 kb of the flanking regions (beyond the previously characterized hecA adhesin gene in the left flank) revealed that the E. chrysanthemi TTSS genes were syntenic and similar (>50% amino-acid identity) with their E. amylovora orthologs. However, the hrp/hrc cluster was interrupted by a cluster of four genes, only one of which, a homolog of lytic transglycosylases, is implicated in TTSS functions. Furthermore, the regions flanking the hrp/hrc cluster lacked genes that were likely to encode TTSS substrates. Instead, some of the genes in these regions predict ABC transporters and methyl-accepting chemotaxis proteins that could have alternative roles in virulence. Mutations affecting all of the genes in the regions flanking or interrupting the hrp/hrc cluster were constructed in E. chrysanthemi CUCPB5047, a mutant whose reduced pectolytic capacity can enhance the phenotype of minor virulence factors. Mutants were screened in witloof chicory leaves and then in potato tubers and Nicotiana clevelandii seedlings. Mu dII1734 insertion in one gene, designated virA, resulted in strongly reduced virulence in all three tests. virA is immediately downstream of hecA, has an unusually low G+C content of 38%, and predicts an unknown protein of 111 amino acids. The E. chrysanthemi TTSS was shown to be active by its ability to translocate AvrPto-Cya (a P. syringae TTSS effector fused to an adenylate cyclase reporter that is active in the presence of eukaryote calmodulin) into N. benthamiana leaf cells. However, VirA(1-61)-Cya was not translocated into plant cells, and virA expression was not affected by mutations in E. chrysanthemi Hrp regulator genes hrpL and hrpS. Thus, the 44-kb region of the E. chrysanthemi EC16 genome that is centered on the hrplhrc cluster encodes a potpourri of virulence factors, but none of these appear to be a TTSS effector. 相似文献
6.
Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi 总被引:6,自引:4,他引:6
Isabelle Bortoli-German Emmanuel Brun Béatrice Py Marc Chippaux Frédéric Barras 《Molecular microbiology》1994,11(3):545-553
Secretion to the cell exterior of cellulase EGZ and of at least six pectinases enables the Gram-negative Erwinia chrysanthemi to cause severe plant disease. The C-terminal cellulose-binding domain (CBD) of EGZ was found to contain a disulphide bond which forms, in the periplasm, between residues Cys-325 and Cys-382. Dithiothreitol (DTT)-treatment of native EGZ showed that the disulphide bond was dispensable, both for catalysis and cellulose binding. Adding DTT to E. chrysanthemi cultures led to immediate arrest of secretion of EGZ which accumulated in the periplasm where the CBD was eventually proteolysed. Site-directed mutagenesis that affected Cys residues involved in disulphide bond formation resulted in molecules that were catalytically active and able to bind to cellulose but were no longer secreted, Instead they accumulated in the periplasm. Interestingly, the region around EGZ Cys-325 is conserved in two pectinases secreted by the same pathway as EGZ. We conclude that the conserved Cys, and possibly adjacent residues, bear essential information for EGZ to be secreted and that periplasmic disulphide bond formation is an obligatory step which provides a pre-folded functional form of EGZ with secretion competence. 相似文献
7.
Many pathogenic Gram-negative bacteria secrete toxins and lytic enzymes via a multiprotein complex called the type II secretion system. This system, named Out in Erwinia chrysanthemi, consists of 14 proteins integrated or associated with the two bacterial membranes. OutC, a key player in this process, is probably implicated in the recognition of secreted proteins and signal transduction. OutC possesses a short cytoplasmic sequence, a single transmembrane segment (TMS), and a large periplasmic region carrying a putative PDZ domain. A hydrodynamic study revealed that OutC forms stable dimers of an elongated shape, whereas the PDZ domain adopts a globular shape. Bacterial two-hybrid, cross-linking, and pulldown assays revealed that the self-association of OutC is driven by the TMS, whereas the periplasmic region is dispensable for self-association. Site-directed mutagenesis of the TMS revealed that cooperative interactions between three polar residues located at the same helical face provide adequate stability for OutC self-assembly. An interhelical H-bonding mediated by Gln(29) appears to be the main driving force, and two Arg residues located at the TMS boundaries are essential for the stabilization of OutC oligomers. Stepwise mutagenesis of these residues gradually diminished OutC functionality and self-association ability. The triple OutC mutant R15V/Q29L/R36A became monomeric and nonfunctional. Self-association and functionality of the triple mutant were partially restored by the introduction of a polar residue at an alternative position in the interhelical interface. Thus, the OutC TMS is more than just a membrane anchor; it drives the protein self-association that is essential for formation of a functional secretion system. 相似文献
8.
Lebeau A Reverchon S Gaubert S Kraepiel Y Simond-Côte E Nasser W Van Gijsegem F 《Environmental microbiology》2008,10(3):545-559
Pathogenicity of the phytopathogenic enterobacterium Erwinia chrysanthemi , the causal agent of soft rot disease on many plants, is a complex process involving several factors whose production is regulated by a complex, intertwined regulatory network. In this work we characterized the GacA regulator, member of the GacS–GacA two-component system, as a global regulator which is required for disease expression but not for bacterial multiplication in planta during the first stages of the plant infection. GacA was shown to control the expression of plant cell wall-degrading enzymes and hrp genes in vitro . Analysis of virulence gene expression during infection of Arabidopsis thaliana revealed a coordinated expression of these virulence genes at 12 h post infection and showed that GacA is required for the appropriate production of virulence factors in planta . GacA might partly act by negatively controlling the expression of the pecT gene encoding the global repressor PecT, indicating a hierarchy in the pathways involved in the E. chrysanthemi regulatory network. 相似文献
9.
The phage shock protein locus (pspFpspABCDE) of Escherichia coli has proved to be something of an enigma since its discovery. The physiological functions of the psp locus, including those of the predicted effector protein PspA, are unknown. In a previous genetic screen, we determined that a Yersinia enterocolitica pspC mutant was severely attenuated for virulence. In this study, the psp locus of Y. enterocolitica was characterized further. The pspC gene of Y. enterocolitica was found to be important for normal growth when the Ysc type III secretion system was expressed in the laboratory. This growth defect was specifically caused by production of the secretin protein, YscC. Expression of the psp genes was induced when the type III secretion system was functional or when only the yscC gene was expressed. This induction of psp gene expression required a functional pspC gene. Most significantly, evidence suggests that the expression of at least one gene that is not part of the psp locus is regulated by Psp proteins. This unidentified gene (or genes) may also be important for growth when the type III secretion system is expressed. These conclusions are supported by the effects of various psp mutations on virulence. This is the first indication that Psp proteins might be involved in the regulation of genes besides the psp locus itself. 相似文献
10.
11.
Hiyoshi H Kodama T Saito K Gotoh K Matsuda S Akeda Y Honda T Iida T 《Cell host & microbe》2011,10(4):401-409
Vibrio parahaemolyticus, a Gram-negative halophilic bacterium that causes acute gastroenteritis in humans, is characterized by two type III secretion systems (T3SS), namely T3SS1 and T3SS2. T3SS2 is indispensable for enterotoxicity but the effector(s) involved are unknown. Here, we identify VopV as a critical effector that is required to mediate V. parahaemolyticus T3SS2-dependent enterotoxicity. VopV was found to possess multiple F-actin-binding domains and the enterotoxicity caused by VopV correlated with its F-actin-binding activity. Furthermore, a T3SS2-related secretion system and a vopV homologous gene were also involved in the enterotoxicity of a non-O1/non-O139 V. cholerae strain. These results indicate that the F-actin-targeting effector VopV is involved in enterotoxic activity of T3SS2-possessing bacterial pathogens. 相似文献
12.
Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase 总被引:24,自引:17,他引:24
下载免费PDF全文

T Andro J P Chambost A Kotoujansky J Cattaneo Y Bertheau F Barras F Van Gijsegem A Coleno 《Journal of bacteriology》1984,160(3):1199-1203
Erwinia chrysanthemi produced several pectate lyases (EC 4.2.2.2) and endocellulases (EC 3.2.1.4) which were largely secreted into the culture medium. Mutants deficient in the secretion mechanism for these enzymes were obtained by chemical and insertion mutagenesis. Further study of one such mutant revealed that both enzyme activities were retained simultaneously within the periplasmic space. 相似文献
13.
Salmonella enterica employs two type III secretion systems (T3SS) for interactions with host cells during pathogenesis. The T3SS encoded by Salmonella pathogenicity island 2 (SPI2) is required for the intracellular replication of Salmonella and the survival inside phagocytes. During growth in vitro, acidic pH is a signal that promotes secretion of proteins by this T3SS. We analyzed protein levels and subcellular localization of various T3SS subunits under in vitro conditions at acidic or neutral pH, inducing or ablating secretion, respectively. Growth at acidic pH resulted in higher levels of SsaC, a protein forming the outer membrane secretin, without increasing expression of the operon containing ssaC. Acidic pH also induced oligomerization of SsaC subunits, a prerequisite for a functional secretin pore. It has previously been described that environmental stimuli resembling the intraphagosomal habitat of Salmonella control the expression of SPI2 genes. Here we propose that such stimuli also modulate the assembly of a functional T3SS that is capable of translocation of effector proteins into the host cell. 相似文献
14.
Zhong D Lefebre M Kaur K McDowell MA Gdowski C Jo S Wang Y Benedict SH Lea SM Galan JE De Guzman RN 《The Journal of biological chemistry》2012,287(30):25303-25311
The type III secretion system (T3SS) is essential in the pathogenesis of many bacteria. The inner rod is important in the assembly of the T3SS needle complex. However, the atomic structure of the inner rod protein is currently unknown. Based on computational methods, others have suggested that the Salmonella inner rod protein PrgJ is highly helical, forming a folded 3 helix structure. Here we show by CD and NMR spectroscopy that the monomeric form of PrgJ lacks a tertiary structure, and the only well-structured part of PrgJ is a short α-helix at the C-terminal region from residues 65-82. Disruption of this helix by glycine or proline mutation resulted in defective assembly of the needle complex, rendering bacteria incapable of secreting effector proteins. Likewise, CD and NMR data for the Shigella inner rod protein MxiI indicate this protein lacks a tertiary structure as well. Our results reveal that the monomeric forms of the T3SS inner rod proteins are partially folded. 相似文献
15.
Gong L Cullinane M Treerat P Ramm G Prescott M Adler B Boyce JD Devenish RJ 《PloS one》2011,6(3):e17852
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes, thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an important role in efficient escape of B. pseudomallei from phagosomes. 相似文献
16.
Ollagnier-de Choudens S Nachin L Sanakis Y Loiseau L Barras F Fontecave M 《The Journal of biological chemistry》2003,278(20):17993-18001
SufA is a component of the recently discovered suf operon, which has been shown to play an important function in bacteria during iron-sulfur cluster biosynthesis and resistance to oxidative stress. The SufA protein from Erwinia chrysanthemi, a Gram-negative plant pathogen, has been purified to homogeneity and characterized. It is a homodimer with the ability to assemble rather labile [2Fe-2S] and [4Fe-4S] clusters as shown by M?ssbauer spectroscopy. These clusters can be transferred to apoproteins such as ferredoxin or biotin synthase during a reaction that is not inhibited by bathophenanthroline, an iron chelator. Cluster assembly in these proteins is much more efficient when iron and sulfur are provided by holoSufA than by free iron sulfate and sodium sulfide. We propose the function of SufA is that of a scaffold protein for [Fe-S] cluster assembly and compare it to IscA, a member of the isc operon also involved in cluster biosynthesis in both prokaryotes and eukaryotes. Mechanistic and physiological implications of these results are also discussed. 相似文献
17.
In Erwinia chrysanthemi, the gene kdgT encodes a transport system responsible for the uptake of ketodeoxyuronates. We studied the biochemical properties of this transport system. The bacteria could grow on 2,5-diketo-3-deoxygluconate but not on 2-keto-3-deoxygluconate. The 2-keto-3-deoxygluconate entry reaction displayed saturation kinetics, with an apparent Km of 0.52 mM (at 30 degrees C and pH 7). 5-Keto-4-deoxyuronate and 2,5-diketo-3-deoxygluconate appeared to be competitive inhibitors, with Kis of 0.11 and 0.06 mM, respectively. The 2-keto-3-deoxygluconate permease could mediate the uptake of glucuronate with a low affinity. kdgT was cloned on an R-prime plasmid formed by in vivo complementation of a kdgT mutation of Escherichia coli. After being subcloned, it was mutagenized with a mini-Mu-lac transposable element able to form fusions with the lacZ gene. We introduced a kdgT-lac fusion into the E. chrysanthemi chromosome by marker exchange recombination and studied its regulation. kdgT product synthesis was not induced by external 2-keto-3-deoxygluconate in the wild-type strain but was induced by galacturonate and polygalacturonate. Two types of regulatory mutants able to grow on 2-keto-3-deoxygluconate as the sole carbon source were studied. Mutants of one group had a mutation in the operator region of kdgT; mutants of the other group had a mutation in kdgR, a regulatory gene controlling kdgT expression. 相似文献
18.
The ttsA gene is required for low-calcium-induced type III secretion of Yop proteins and virulence of Yersinia enterocolitica W22703
下载免费PDF全文

Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain. 相似文献
19.
The type IV secretion system of Sinorhizobium meliloti strain 1021 is required for conjugation but not for intracellular symbiosis
下载免费PDF全文

The type IV secretion system (T4SS) of the plant intracellular symbiont Sinorhizobium meliloti 1021 is required for conjugal transfer of DNA. However, it is not required for host invasion and persistence, unlike the T4SSs of closely related mammalian intracellular pathogens. A comparison of the requirement for a bacterial T4SS in plant versus animal host invasion suggests an important difference in the intracellular niches occupied by these bacteria. 相似文献
20.
The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P < 0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts. 相似文献