首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens   总被引:40,自引:5,他引:35  
The mechanism of iron utilization from transferrin has been most extensively characterized in the pathogenic Neisseria species and Haemophilus species. Two transferrin-binding proteins, Tbp1 and Tbp2, have been identified in these pathogens and are thought to be components of the transferrin receptor. Tbp1 appears to be an integral, TonB-dependent outer membrane protein while Tbp2, a lipoprotein, may be peripherally associated with the outer membrane. The relative contribution of each of these proteins to transferrin binding and utilization is discussed and a model of iron uptake from transferrin is presented. Sequence comparisons of the genes encoding neisserial transferrin-binding proteins suggest that they are probably under positive selection for variation and may have resulted from inter-species genetic exchange.  相似文献   

2.
The pathogenic Neisseria species are capable of utilizing transferrin as their sole source of iron. A neisserial transferrin receptor has been identified and its characteristics defined; however, the biochemical identities of proteins which are required for transferrin receptor function have not yet been determined. We identified two iron-repressible transferrin-binding proteins in Neisseria gonorrhoeae, TBP1 and TBP2. Two approaches were taken to clone genes required for gonococcal transferrin receptor function. First, polyclonal antiserum raised against TBP1 was used to identify clones expressing TBP1 epitopes. Second, a wild-type gene copy was cloned that repaired the defect in a transferrin receptor function (trf) mutant. The clones obtained by these two approaches were shown to overlap by DNA sequencing. Transposon mutagenesis of both clones and recombination of mutagenized fragments into the gonococcal chromosome generated mutants that showed reduced binding of transferrin to whole cells and that were incapable of growth on transferrin. No TBP1 was produced in these mutants, but TBP2 expression was normal. The DNA sequence of the gene encoding gonococcal TBP1 (tbpA) predicted a protein sequence homologous to the Escherichia coli and Pseudomonas putida TonB-dependent outer membrane receptors. Thus, both the function and the predicted protein sequence of TBP1 were consistent with this protein serving as a transferrin receptor.  相似文献   

3.
Energy-dependent changes in the gonococcal transferrin receptor   总被引:12,自引:1,他引:11  
The pathogenic Neisseria spp. are capable of iron utilization from host iron-binding proteins including transferrin and lactoferrin. Transferrin iron utilization is an energy-dependent, receptor-mediated event in which two identified transferrin-binding proteins participate. One of these proteins, TbpA, is homologous to the TonB-dependent family of outer membrane receptors that are required for high-affinity uptake of vitamin B12 and ferric siderophores. The 'TonB box' is a conserved domain near the amino-terminus of these proteins that has been implicated in interaction with TonB. Interaction between a periplasmic domain of TonB and the TonB box allows energy transduction to occur from the cytoplasmic membrane to the energy-dependent receptor in the outer membrane. We created a TonB box mutant of gonococcal TbpA and demonstrated that its binding and protease accessibility characteristics were indistinguishable from those of gonococcal Ton system mutants. The protease exposure of the second transferrin-binding protein, TbpB, was affected by the energization of TbpA, consistent with an interaction between these proteins. TbpB expressed by the de-energized mutants was readily accessible to protease, similar to TbpB expressed in the absence of TbpA. The de-energized mutants exhibited a marked decrease in transferrin diffusion rate, suggesting that receptor energization was necessary for ligand release. We propose a model to explain the observed Ton-dependent changes in the binding parameters and exposures of TbpA and TbpB.  相似文献   

4.
Isogenic mutants were constructed in the tbpA and tbpB genes from Neisseria meningitidis strain B16B6, which code for the transferrin receptor proteins, Tbp1 and Tbp2. Insertion mutants of the tbpA and tbpB genes were obtained by shuttle mutagenesis and by in vitro cassette mutagenesis, respectively. The Isogenic mutants were verified by Southern blot and Western blot analysis. Isogenic mutants deficient in Tbp1 or Tbp2 demonstrated a reduced transferrin binding activity in intact cells and total membranes but were incapable of utilizing transferrin iron for growth. Tbp1 could be isolated by affinity methods from the mutant lacking Tbp2 but isolation of Tbp2 from the mutant lacking Tbp1 required the presence of exogenous Tbp1.  相似文献   

5.
The gene for gonococcal transferrin-binding protein 1 (TBP1) was cloned behind an inducible promoter in Escherichia coli. The resultant strain was capable of binding human transferrin with the same specificity as that of the gonococcus. E. coli expressing TBP1 did not internalize transferrin-bound iron or grow on transferrin as a sole iron source.  相似文献   

6.
Abstract The transferrin receptor or transferrin-binding proteins (Tbps) of 50 strains of Neisseria meningitidis belonging to different serogroups were examined by Western blotting using two rabbit antisera raised against Tbp purified from N. meningitidis strains B16B6 and M982. On the basis of the reactivity of Tbp2 with the antisera two patterns were observed and allowed the classification of 74% of the strains in group I (M982-like strains) and 26% in group II (B16B6-like strains). Southern blot analysis was performed on the genomic DNA of 16 meningococcal strains and showed that under stringent conditions, the tbp2 probes were specific for each group identified. Both immunological and genomic analyses have led to the identification within N. meningitidis strains of two major families distinguished on the basis of the characteristics of Tbp2 molecules, independently of serogroup, type or subtype.  相似文献   

7.
A dynamic model of the meningococcal transferrin receptor.   总被引:7,自引:0,他引:7  
Iron is an essential nutrient for all organisms and consequently, the ability to bind transferrin and sequester iron from his source constitutes a distinct advantage to a blood-borne bacterial pathogen. Levels of free iron are strictly limited in human serum, largely through the action of the iron-binding protein transferrin. The acquisition of trasferrin-iron is coincident with pathogenicity among Neisseria species and a limited number of other pathogens of human and veterinary significance. In Neisseria meningitidis, transferrin binding relies on two co-expressed, outer membrane proteins distinct in aspects of both structure and function. These proteins are independently and simultaneously capable of binding human transferrin and both are required for the optimal uptake of iron from this source. It has been established that transferrin-binding proteins (designated TbpA and TbpB) form a discrete, specific complex which may be composed of a transmembrane species (composed of the TbpA dimer) associated with a single surface-exposed lipoprotein (TbpB). This more exposed protein is capable of selectively binding iron-saturated transferrin and the receptor complex has ligand-binding properties which are distinct from either of its components. Previous in vivo analyses of N. gonorrhoeae, which utilizes a closely related transferrin-iron uptake system, indicated that this receptor exists in several conformations influenced in part by the presence (or absence) of transferrin.Here we propose a dynamic model of the meningococcal transferrin receptor which is fully consistent with the current data concerning this subject. We suggest that TbpB serves as the initial binding site for iron-saturated transferrin and brings this ligand close to the associated transmembrane dimer, enabling additional binding events and orientating transferrin over the dual TbpA pores. The antagonistic association of these receptor proteins with a single ligand molecule may also induce conformational change in transferrin, thereby favouring the release of iron. As, in vivo, transferrin may have iron in one or both lobes, this dynamic molecular arrangement would enable iron uptake from either iron-binding site. In addition, the predicted molecular dimensions of the putative TbpA dimer and hTf are fully consistent with these proposals. Given the diverse data used in the formulation of this model and the consistent characteristics of transferrin binding among several significant Gram-negative pathogens, we speculate that such receptor-ligand interactions may be, at least in part, conserved between species. Consequently, this model may be applicable to bacteria other than N. meningitidis.  相似文献   

8.
The lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA . The putative product of this open reading frame, tentatively designated lbpB showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N . meningitidis . A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDS-containing sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.  相似文献   

9.
Iron-saturated human transferrin was digested with either chymotrypsin or trypsin to produce C-lobe and N-lobe protein fragments. Individual protein fragments were purified by a combination of gel filtration and Concanavalin A affinity chromatographic procedures. The C-lobe and N-lobe fragments of human transferrin were then used in binding assays to assess their ability in binding to the bacterial transferrin receptors. Competitive binding assays demonstrated that the C-lobe fragment of human transferrin binds as well as intact human transferrin to bacterial transterrin receptors from Neisseria meningitidis, Neisseria gonorrhoeae and Haemophlius influenzae. Using isogenic mutants of N. meningitidis deficient in either of the transferrin-binding proteins (Tbps), we demonstrated that both transferrin-binding proteins were able to bind to the C-lobe fragment of human transferrin.  相似文献   

10.
Transferrin-binding protein B (TbpB) is one component of a bipartite receptor in several gram-negative bacterial species that binds host transferrin and mediates the uptake of iron for growth. Transferrin and TbpB are both bilobed proteins, and the interaction between these proteins seems to involve similar lobe-lobe interactions. Synthetic overlapping peptide libraries representing the N lobe of TbpB from Moraxella catarrhalis were prepared and probed with labeled human transferrin. Transferrin-binding peptides were localized to six different regions of the TbpB N lobe, and reciprocal experiments identified six different regions of the C lobe of transferrin that bound TbpB. Truncations of the N lobe of TbpB that sequentially removed each transferrin-binding determinant were used to probe an overlapping peptide library of the C lobe of human transferrin. The removal of each TbpB N-lobe transferrin-binding determinant resulted in a loss of reactivity with peptides from the synthetic peptide library representing the C lobe of transferrin. Thus, individual peptide-peptide interactions between ligand and receptor were identified. A structural model of human transferrin was used to map surface regions capable of binding to TbpB.  相似文献   

11.
The genomic transferrin receptor genes ( tbpA and tbpB  ) from two strains of Haemophilus influenzae type b (Hib) and two strains of non-typable H. influenzae (NTHi) have been cloned and sequenced. The deduced protein sequences of the H. influenzae tbpA genes were 95–100% conserved and those of the tbpB genes were 66–100% conserved. The tbpB gene from one strain of NTHi was found to encode a truncated Tbp2 protein. The tbpB genes from four additional NTHi strains were amplified by the polymerase chain reaction (PCR) utilizing primers derived from the conserved N-terminal sequences of Tbp1 and Tbp2 and were found to encode full-length proteins. Although several bacterial species express transferrin receptors, when the Tbp1 and Tbp2 sequences from different organisms were compared, there was only limited homology. Recombinant Tbp1 and Tbp2 proteins were expressed from Escherichia coli and antisera were raised to the purified proteins. There was significant antigenic conservation of both Tbp1 and Tbp2 amongst H. influenzae strains, as determined by Western blot analysis. In a passive model of bacteraemia, infant rats were protected from challenge with Hib after transfer of anti-rTbp2 antiserum, but not after anti-rTbp1 antiserum.  相似文献   

12.
Gram-negative porcine pathogens from the Pasteurellaceae family possess a surface receptor complex capable of acquiring iron from porcine transferrin (pTf). This receptor consists of transferrin-binding protein A (TbpA), a transmembrane iron transporter, and TbpB, a surface-exposed lipoprotein. Questions remain as to how the receptor complex engages pTf in such a way that iron is positioned for release, and whether divergent strains present distinct recognition sites on Tf. In this study, the TbpB-pTf interface was mapped using a combination of mass shift analysis and molecular docking simulations, localizing binding uniquely to the pTf C lobe for multiple divergent strains of Actinobacillus plueropneumoniae and suis. The interface was further characterized and validated with site-directed mutagenesis. Although targeting a common lobe, variants differ in preference for the two sublobes comprising the iron coordination site. Sublobes C1 and C2 participate in high affinity binding, but sublobe C1 contributes in a minor fashion to the overall affinity. Further, the TbpB-pTf complex does not release iron independent of other mediators, based on competitive iron binding studies. Together, our findings support a model whereby TbpB efficiently captures and presents iron-loaded pTf to other elements of the uptake pathway, even under low iron conditions.  相似文献   

13.
Utilization of transferrin-bound iron by Listeria monocytogenes   总被引:5,自引:0,他引:5  
Abstract It has been demonstrated that under iron-restricted conditions, Listeria monocytogenes can utilize iron-loaded transferrin (Tf) from a range of species as its sole source of iron for growth. Human transferrin conjugated to horseradish-peroxidase (HRP-Tf) bound directly to whole cells of L. monocytogenes . This binding was blocked by apotransferrin indicating that the receptor can bind transferrin in either the iron-bound or iron-free form. Transferrin-binding was not host specific because both bovine and equine transferrin inhibited the binding of HRP-conjugated human transferrin. SDS-PAGE and Western blotting of bacterial surface extracts revealed the presence of a transferrin-binding protein of approximately 126 kDa.  相似文献   

14.
The binding of iron-loaded human transferrin at the surface of Neisseria meningitidis is mediated by two polypeptides, Tbp1 and Tbp2. Predicted Tbp amino acid sequences from N. meningitidis strains are highly divergent. This variability is particularly pronounced throughout the Tbp2 polypeptide. In this study, a highly structured and extremely stable Tbp2 domain of about 270 to 290 amino acids which is involved in the binding to transferrin and whose position is well conserved has been characterized. The conservation of such a remarkable structure in a very divergent protein domain (there is only 43% amino acid identity within this region) suggests that is plays an essential biological role and raises a number of questions regarding tbp2 evolution.  相似文献   

15.
16.
The ability to gain access to iron is pivotal for bacterial pathogens during infection. Although much is known about iron acquisition systems in Gram-negative bacteria, comparatively little is known about how Gram-positive pathogens access iron from host iron sources. A previous study showed that, in the Gram-positive human pathogen Staphylococcus aureus, a cell surface-associated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme (Gap, or Tpn) is capable of binding human transferrin, representing a potential means by which this bacterium is able to access iron in vivo. We have investigated this property of S. aureus further and shown that, in S. aureus RN6390, GAPDH is expressed on the S. aureus cell surface independent of exogenous iron concentrations, and that overexpressed and purified Gap, although retaining GAPDH activity, has no affinity for human transferrin. Moreover, although a S. aureus gap mutant was devoid of surface-associated and cytoplasmic GAPDH activity, it retained the ability to bind human transferrin, equivalent to wild type. We concluded from these results that the Gap protein is not involved in S. aureus binding to human transferrin. We identified the transferrin-binding protein as a novel cell wall-anchored protein, designated StbA for staphylococcal transferrin-binding protein A, which shared no significant similarities with any other bacterial transferrin-binding proteins. StbA contained a C-terminal cell wall-anchoring motif (LPKTG), and expression of StbA in the cell wall was strictly controlled by exogenous iron concentrations. The stbA gene is found within a 7 kb region in the S. aureus chromosome that contains a total of six iron-regulated genes. Immediately downstream from stbA is an iron-regulated gene whose product was predicted to be another cell wall-anchored protein with no significant similarity to proteins with characterized functions. Transcribed in the opposite direction from stbA is a four-gene operon whose expression is also regulated by iron. While the deduced products of the first two genes lack similarity to known proteins, the last two genes encode, respectively, putative lipoprotein and permease components of an ABC transporter that shares significant similarities with several iron(III) ABC transporters in a variety of bacteria.  相似文献   

17.
Iron, an essential nutrient for most microorganisms, is sequestered by the host to decrease the concentration of iron available to bacterial pathogens. Neisseria gonorrhoeae , the causative agent of gonorrhoea, can acquire iron by direct interaction with human iron-binding proteins, including the serum glycoprotein, transferrin. Iron internalization from host transferrin requires the expression of a bacterial receptor, which specifically recognizes the human form of transferrin. Two gonococcal transferrin-binding proteins have been implicated in transferrin receptor function, TbpA and TbpB. We constructed a gonococcal transferrin receptor mutant without the introduction of additional antibiotic resistance markers and tested its ability to cause experimental urethritis in human male volunteers. The transferrin receptor mutant was incapable of initiating urethritis, although the same inoculum size of the wild-type parent strain, FA1090, causes urethritis in >90% of inoculated volunteers. To our knowledge, this is the first experimental demonstration that a bacterial iron acquisition system is an essential virulence factor for human infection.  相似文献   

18.
Pathogenic bacteria acquire the essential element iron through specialized uptake pathways that are necessary in the iron-limiting environments of the host. Members of the Gram-negative Neisseriaceae and Pasteurellaceae families have adapted to acquire iron from the host iron binding glycoprotein, transferrin (Tf), through a receptor complex comprised of transferring-binding protein (Tbp) A and B. Because of the critical role they play in the host, these surface-exposed proteins are invariably present in clinical isolates and thus are considered prime vaccine targets. The specific interactions between TbpB and Tf are essential and ultimately might be exploited to create a broad-spectrum vaccine. In this study, we report the structure of TbpBs from two porcine pathogens, Actinobacillus pleuropneumoniae and suis. Paradoxically, despite a common Tf target, these swine related TbpBs show substantial sequence variation in their Tf-binding site. The TbpB structures, supported by docking simulations, surface plasmon resonance and hydrogen/deuterium exchange experiments with wild-type and mutant TbpBs, explain why there are structurally conserved elements within TbpB homologs despite major sequence variation that are required for binding Tf.  相似文献   

19.
A transferrin binding protein was isolated from normal rat placenta and from iron-deficient rat plasma using a human transferrin affinity column. The yield of the isolated pure protein from iron-deficient rat plasma was about 0.5 micrograms/ml plasma. The major protein had a molecular mass of 85 kDa and contained carbohydrate. Reduction with mercaptoethanol did not change the molecular mass of the plasma transferrin binding protein whereas the native placental transferrin receptor of 180 kDa was reduced to 90 kDa. The transferrin binding protein reacted with both monoclonal and polyclonal antibodies raised against rat transferrin receptor. Immunoblotting of both normal and iron deficient rat plasma showed that the transferrin binding protein had a molecular mass of 85 kDa. In vitro digestion of purified rat placental transferrin receptor and red blood cells with trypsin provided an identical peptide profile, suggesting that the transferrin binding protein in rat plasma is derived from proteolysis of the extracellular portion of the transferrin receptor of the erythroid tissues.  相似文献   

20.
Neisseria gonorrhoeae is able to utilize iron (Fe) from a variety of sources including transferrin (TF) and lactoferrin (LF). To gain insight into the molecular mechanisms used by gonococci to scavenge Fe from TF and LF, we cloned a 3.5 kb segment of wild-type DNA that repaired the defect in tlu mutants, which are unable to take up Fe from either TF or LF despite exhibiting apparently normal ligand binding to the receptor. Nucleotide sequence determination identified three open reading frames (ORFs), designated ORF1, ORF2, and ORF3, which were arranged in tandem. The deduced amino acid sequence of the 852 bp ORF1 encoded a 28 kDa protein that exhibited 26–32% identity with TonB proteins of nine other bacteria. The 663 bp ORF2 predicted a 24 kDa protein and the 435 bp long ORF3 predicted a 15 kDa protein. These predicted protein sequences exhibited 32–38% and 24–36% identity, respectively, with ExbB and ExbD proteins of three other bacteria. Thus, the sequence comparison identified the ORF1, ORF2 and ORF3 as gonococcal homologues of the E. coli tonB , exbB and exbD genes. An insertional mutation in the tonB homologue resulted in the failure of gonococci to grow with TF, LF or human haemoglobin (HB) as sole Fe sources and in the inability to take up 55Fe from TF and LF. The tonB mutation did not prevent the utilization of Fe from citrate (CT) or haemin (HM). Binding of TF, LF and HB to whole cells in a solid-phase binding assay was largely unaffected by the tonB mutation. We conclude that the pathways for utilization of Fe bound to TF, LF and HB but not to HM or CT were dependent on the TonB system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号