首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18)   总被引:13,自引:0,他引:13       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3129-3139
While the leukocyte integrin lymphocyte function-associated antigen (LFA)-1 has been demonstrated to bind intercellular adhesion molecule (ICAM)-1, results with the related Mac-1 molecule have been controversial. We have used multiple cell binding assays, purified Mac- 1 and ICAM-1, and cell lines transfected with Mac-1 and ICAM-1 cDNAs to examine the interaction of ICAM-1 with Mac-1. Stimulated human umbilical vein endothelial cells (HUVECs), which express a high surface density of ICAM-1, bind to immunoaffinity-purified Mac-1 adsorbed to artificial substrates in a manner that is inhibited by mAbs to Mac-1 and ICAM-1. Transfected murine L cells or monkey COS cells expressing human ICAM-1 bind to purified Mac-1 in a specific and dose-dependent manner; the attachment to Mac-1 is more temperature sensitive, lower in avidity, and blocked by a different series of ICAM-1 mAbs when compared to LFA-1. In a reciprocal assay, COS cells cotransfected with the alpha and beta chain cDNAs of Mac-1 or LFA-1 attach to immunoaffinity- purified ICAM-1 substrates; this adhesion is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. Two color fluorescence cell conjugate experiments show that neutrophils stimulated with fMLP bind to HUVEC stimulated with lipopolysaccharide for 24 h in an ICAM-1-, Mac-1-, and LFA-1- dependent fashion. Because cellular and purified Mac-1 interact with cellular and purified ICAM-1, we conclude that ICAM-1 is a counter receptor for Mac-1 and that this receptor pair is responsible, in part, for the adhesion between stimulated neutrophils and stimulated endothelial cells.  相似文献   

2.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

3.
The lymphatic circulation mediates drainage of fluid and cells from the periphery through lymph nodes, facilitating immune detection of lymph-borne foreign Ags. The 10.1.1 mAb recognizes a lymphatic endothelial Ag, in this study purified by Ab-affinity chromatography. SDS-PAGE and mass spectrometry identified murine chloride channel calcium-activated 1 (mCLCA1) as the 10.1.1 Ag, a 90-kDa cell-surface protein expressed in lymphatic endothelium and stromal cells of spleen and thymus. The 10.1.1 Ab-affinity chromatography also purified LFA-1, an integrin that mediates leukocyte adhesion to endothelium. This mCLCA1-LFA-1 interaction has functional consequences, as lymphocyte adhesion to lymphatic endothelium was blocked by 10.1.1 Ab bound to endotheliumor by LFA-1 Ab bound to lymphocytes. Lymphocyte adhesion was increased by cytokine treatment of lymphatic endothelium in association with increased expression of ICAM-1, an endothelial surface protein that is also a ligand for LFA-1. By contrast, mCLCA1 expression and the relative contribution of mCLCA1 to lymphocyte adhesion were unaffected by cytokine activation, demonstrating that mCLCA1 and ICAM-1 interactions with LFA-1 are differentially regulated. mCLCA1 also bound to the LFA-1-related Mac-1 integrin that is preferentially expressed on leukocytes. mCLCA1-mediated adhesion of Mac-1- or LFA-1-expressing leukocytes to lymphatic vessels and lymph node lymphatic sinuses provides a target for investigation of lymphatic involvement in leukocyte adhesion and trafficking during the immune response.  相似文献   

4.
Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration.   总被引:29,自引:0,他引:29  
To differentiate the unique and overlapping functions of LFA-1 and Mac-1, LFA-1-deficient mice were developed by targeted homologous recombination in embryonic stem cells, and neutrophil function was compared in vitro and in vivo with Mac-1-deficient, CD18-deficient, and wild-type mice. LFA-1-deficient mice exhibit leukocytosis but do not develop spontaneous infections, in contrast to CD18-deficient mice. After zymosan-activated serum stimulation, LFA-1-deficient neutrophils demonstrated activation, evidenced by up-regulation of surface Mac-1, but did not show increased adhesion to purified ICAM-1 or endothelial cells, similar to CD18-deficient neutrophils. Adhesion of Mac-1-deficient neutrophils significantly increased with stimulation, although adhesion was lower than for wild-type neutrophils. Evaluation of the strength of adhesion through LFA-1, Mac-1, and CD18 indicated a marked reduction in firm attachment, with increasing shear stress in LFA-1-deficient neutrophils, similar to CD18-deficient neutrophils, and only a modest reduction in Mac-1-deficient neutrophils. Leukocyte influx in a subcutaneous air pouch in response to TNF-alpha was reduced by 67% and 59% in LFA-1- and CD18-deficient mice but increased by 198% in Mac-1-deficient mice. Genetic deficiencies demonstrate that both LFA-1 and Mac-1 contribute to adhesion of neutrophils to endothelial cells and ICAM-1, but adhesion through LFA-1 overshadows the contribution from Mac-1. Neutrophil extravasation in response to TNF-alpha in LFA-1-deficient mice dramatically decreased, whereas neutrophil extravasation in Mac-1-deficient mice markedly increased.  相似文献   

5.
Although the beta2-integrins have been implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury, the relative contributions of the alpha-subunits to the pathogenesis of ischemic stroke remains unclear. The objective of this study was to determine whether and how genetic deficiency of either lymphocyte function-associated antigen-1 (LFA-1) or macrophage-1 (Mac-1) alters the blood cell-endothelial cell interactions, tissue injury, and organ dysfunction in the mouse brain exposed to focal I/R. Middle cerebral artery occlusion was induced for 1 h (followed by either 4 or 24 h of reperfusion) in wild-type mice and in mice with null mutations for either LFA-1 or Mac-1. Neurological deficit and infarct volume were monitored for 24 h after reperfusion. Platelet- and leukocyte-vessel wall adhesive interactions were monitored in cortical venules by intravital microscopy. Mice with null mutations for LFA-1 or Mac-1 exhibited significant reductions in infarct volume. This was associated with a significant improvement in the I/R-induced neurological deficit. Leukocyte adhesion in cerebral venules did not differ between wild-type and mutant mice at 4 h after reperfusion. However, after 24 h of reperfusion, leukocyte adhesion was reduced in both LFA-1- and Mac-1-deficient mice compared with their wild-type counterparts. Platelet adhesion was also reduced at both 4 and 24 h after reperfusion in the LFA-1- and Mac-1-deficient mice. These findings indicate that both alpha-subunits of the beta2-integrins contribute to the brain injury and blood cell-vessel wall interactions that are associated with transient focal cerebral ischemia.  相似文献   

6.
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.  相似文献   

7.
Neutrophil recruitment into lung constitutes a major response to airborne endotoxins. In many tissues endothelial intercellular adhesion molecule-1 (ICAM-1) interacts with lymphocyte function associated antigen-1 (LFA-1) on neutrophils, and this interaction plays a critical role in neutrophil recruitment. There are conflicting reports about the role of ICAM-1 in neutrophil recruitment into lungs. We studied neutrophil recruitment into alveolar space in a murine model of aerosolized LPS-induced lung inflammation. LPS induces at least a 100-fold increase in neutrophil numbers in alveolar space, as determined by flow cytometry of bronchoalveolar lavage fluid. Neutrophil recruitment was reduced by 54% in ICAM-1 null mice and by 45% in LFA-1 null mice. In wild-type mice treated with anti-ICAM-1 and anti-LFA-1 antibodies, there was 51 and 58% reduction in the neutrophil recruitment, respectively. In chimeric mice, generated by the transplantation of mixtures of bone marrows from LFA-1 null and wild-type mice, the normalized recruitment of LFA-1 null neutrophils was reduced by 60% compared with wild-type neutrophils. Neither the treatment of ICAM-1 null mice with a function-blocking antibody to LFA-1 nor the treatment of LFA-1 null mice with anti-ICAM-1 antibody resulted in further reduction in the recruitment compared with untreated ICAM-1 null and LFA-1 null mice. We conclude that ICAM-1 and LFA-1 play critical roles in the recruitment of neutrophils into the alveolar space in aerosolized LPS-induced lung inflammation, and LFA-1 serves as a ligand of ICAM-1 in the lung.  相似文献   

8.
LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) are members of the beta2 integrins involved in leukocyte function during immune and inflammatory responses. We aimed to determine a minimized beta2 subunit that forms functional LFA-1 and Mac-1. Using a series of truncated beta2 variants, we showed that the subregion Q23-D300 of the beta2 subunit is sufficient to combine with the alphaL and alphaM subunits intracellularly. However, only the beta2 variants terminating after Q444 promote cell surface expression of LFA-1 and Mac-1. Thus, the major cysteine-rich region and the three highly conserved cysteine residues at positions 445, 447, and 449 of the beta2 subunit are not required for LFA-1 and Mac-1 surface expression. The surface-expressed LFA-1 variants are constitutively active with respect to ICAM-1 adhesion and these variants express the activation reporter epitope of the mAb 24. In contrast, surface-expressed Mac-1, both the wild type and variants, require 0. 5 mM MnCl2 for adhesion to denatured BSA. These results suggest that the role of the beta2 subunit in LFA-1- and Mac-1-mediated adhesion may be different.  相似文献   

9.
Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2   总被引:2,自引:0,他引:2  
Single-molecule measurements of the interaction of leukocyte function-associated antigen-1 (LFA-1), expressed on Jurkat T cells, with intercellular adhesion molecules-1 and -2 (ICAM-1 and ICAM-2) were conducted using atomic force microscopy (AFM). The force spectra (i.e., unbinding force versus loading rate) of both the LFA-1/ICAM-1 and LFA-1/ICAM-2 interactions were acquired at a loading rate range covering 3 orders of magnitude (50-60,000 pN/s) and revealed a fast loading regime and a slow loading regime. This indicates that the dissociation of both complexes involves overcoming a steep inner and a wide outer activation barrier. LFA-1 binding to ICAM-1 and ICAM-2 was strengthened in the slow loading regime by the addition of Mg(2+). Differences in the dynamic strength of the LFA-1/ICAM-1 and LFA-1/ICAM-2 interactions can be attributed to the presence of wider barriers in the ICAM-2 complex, making it more responsive to a pulling force than the ICAM-1 complex.  相似文献   

10.
A key endothelial receptor in leukocyte-endothelial cell (EC) interactions is ICAM-1. ICAM-1 is constitutively expressed at low levels on vascular ECs, and its levels significantly increase following stimulation with many proinflammatory agents. This study provides evidence that in inflamed arterioles of anesthetized mice (65 mg/kg ip Nembutal), ICAM-1 mediates leukocyte rolling, in contrast to its expected role of mediating firm adhesion in venules. The number of leukocytes rolling on arteriolar ECs is decreased in ICAM-1 knockout (KO) compared with wild-type (WT) mice (KO, 6.0 +/- 0.9; WT, 12.0 +/- 1.0 leukocytes/40 s; P < 0.05), whereas the leukocyte-rolling number in venules remains unaffected (KO, 5.6 +/- 0.9; WT, 7.0 +/- 0.7 leukocytes/40 s; n = 13-15 sites). We also show that the fraction of leukocytes that is rolling on arteriolar ECs does so with a higher characteristic velocity (>70 microm/s), and, furthermore, that the distance over which rolling contacts with the arteriolar wall are maintained is ICAM-1 dependent. In ICAM-1 KO animals or in WT mice in the presence of ICAM-1-blocking antibody, leukocytes rolled significantly shorter distances over the sampled 200-microm vessel length compared with WT (68 +/- 6.7 and 55 +/- 9.4 vs. 85 +/- 12.9% total, respectively, n = 4 sites, P < 0.05). We also found evidence that in ICAM-1 KO mice, a significant fraction of leukocyte rolling and adhesive interactions with arteriolar ECs could be accounted for by upregulation of another adhesion molecule, VCAM-1, providing an important illustration of how expression of related proteins can be altered following genetic ablatement of a target molecule (in this case ICAM-1).  相似文献   

11.
Intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured umbilical vein and saphenous vein endothelial cells was upregulated between 2.5- and 40-fold by rIL-1, rTNF, LPS and rIFN gamma corresponding to up to 5 X 10(6) sites/cell. Endothelial cell ICAM-1 was a single band of 90 kD in SDS-PAGE. Purified endothelial cell ICAM-1 reconstituted into liposomes and bound to plastic was an excellent substrate for both JY B lymphoblastoid cell and T lymphoblast adhesion. Adhesion to endothelial cell ICAM-1 in planar membranes was blocked completely by monoclonal antibodies to lymphocyte function associated antigen-1 (LFA-1) or ICAM-1. Adhesion to artificial membranes was most sensitive to ICAM-1 density within the physiological range found on resting and stimulated endothelial cells. Adhesion of JY B lymphoblastoid cells, normal and genetically LFA-1 deficient T lymphoblasts and resting peripheral blood lymphocytes to endothelial cell monolayers was also assayed. In summary, LFA-1 dependent (60-90% of total adhesion) and LFA-1-independent basal adhesion was observed and the use of both adhesion pathways by different interacting cell pairs was increased by monokine or lipopolysaccharide stimulation of endothelial cells. The LFA-1-dependent adhesion could be further subdivided into an LFA-1/ICAM-1-dependent component which was increased by cytokines and a basal LFA-1-dependent, ICAM-1-independent component which did not appear to be affected by cytokines. We conclude that ICAM-1 is a regulated ligand for lymphocyte-endothelial cell adhesion, but at least two other major adhesion pathways exist.  相似文献   

12.
Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg(2+), a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.  相似文献   

13.
M B Lawrence  T A Springer 《Cell》1991,65(5):859-873
Rolling of leukocytes on vascular endothelial cells, an early event in inflammation, can be reproduced in vitro on artificial lipid bilayers containing purified CD62, a selectin also named PADGEM and GMP-140 that is inducible on endothelial cells. Neutrophils roll on this selectin under flow conditions similar to those found in postcapillary venules. Adhesion of resting or activated neutrophils through the integrins LFA-1 and Mac-1 to ICAM-1 in a lipid bilayer does not occur at physiologic shear stresses; however, static incubation of activated neutrophils allows development of adhesion that is greater than 100-fold more shear resistant than found on CD62. Addition of a chemoattractant to activate LFA-1 and Mac-1 results in the arrest of neutrophils rolling on bilayers containing both CD62 and ICAM-1. Thus, at physiologic shear stress, rolling on a selectin is a prerequisite for activation-induced adhesion strengthening through integrins.  相似文献   

14.
In infected tissues, leukocyte recruitment is mediated by interactions between adhesion molecules, expressed on activated vascular endothelial cells, and ligands present on circulating cells. We evaluated the inflammatory response and the expression of cellular adhesion molecules (ICAM-1, VCAM-1, CD18, LFA-1 and Mac-1) in lungs of BALB/c mice infected with Paracoccidioides brasiliensis conidia. When compared with uninfected animals, infected mice had a significant increase in the inflammatory response during the first 4 days, peaking 2-3 days post-challenge, 40.3% vs. 0.0% and 41.8% vs. 0.7%, respectively. This inflammatory infiltrate was composed mainly of neutrophils and macrophages with a few eosinophils and lymphocytes. An increase in the intensity of immunofluorescence (IF) for ICAM-1 was also observed during days 1-4. ICAM-1 was present in bronchiolar epithelium, type II pneumocytes, and macrophages, as well as on vascular endothelium. The control animals presented ICAM-1 constitutively. In infected mice, VCAM-1 was only observed on vascular endothelium during the first 2 days, with some macrophages expressing this molecule throughout the study periods. CD18 and Mac-1 but not LFA-1 were expressed with a high intensity on neutrophils and macrophages present in the inflammatory infiltrate. In addition, we observed a significant decrease in Colony forming units (CFUs) after the first 2 days post-challenge. These findings suggest that during these early stages, up-regulation of ICAM-1, VCAM-1, CD18 and Mac-1 expression occurs, participating in the inflammatory process and as such, in the pathogenesis of paracoccidioidomycosis (PCM).  相似文献   

15.
To study selectin-independent leukocyte recruitment and the role of intercellular adhesion molecule-1 (ICAM-1), we generated mice lacking all three selectins and ICAM-1 (E/P/L/I-/-) by bone marrow transplantation. These mice were viable and appeared healthy under vivarium conditions, although they showed a 97% reduction in leukocyte rolling, a 63% reduction in leukocyte firm adhesion, and a 99% reduction of neutrophil recruitment in a thioglycollate-induced model of peritonitis at 4 and 24 h. Mononuclear cell recruitment was almost unaffected. All residual leukocyte rolling and most leukocyte adhesion in these mice depended on alpha(4)-integrins, but a small number of leukocytes (6% of wild-type control) still became adherent in the absence of all known rolling mechanisms (E-, P-, L-selectin and alpha(4)-integrins). A striking similarity of leukocyte adhesion efficiency in E/P/L-/- and E/P/I-/- mice suggests a pathway in which leukocyte rolling through L-selectin requires ICAM-1 for adhesion and recruitment. Comparison of our data with mice lacking individual or other combinations of adhesion molecules reveal that elimination of more adhesion molecules further reduces leukocyte recruitment but the effect is less than additive.  相似文献   

16.
17.
18.
The red cell ICAM-4/LW blood group glycoprotein, which belongs to the family of intercellular adhesion molecules (ICAMs), has been reported to interact with CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) beta(2) integrins. To better define the basis of the ICAM-4/beta(2) integrin interaction, we have generated wild-type, domain-deleted and mutated recombinant chimeric ICAM-4-Fc proteins and analyzed their interaction in a cellular adhesion assay with LFA-1 and Mac-1 L-cell stable transfectants. We found that monoclonal antibodies against CD11a, CD11b, CD18, or LW(ab) block adhesion of transfectant L-cells to immobilized ICAM-4-Fc protein and that the ICAM-4/beta(2) integrin interaction was highly sensitive to the presence of the divalent cations Ca(2+) and Mg(2+). Deletion of individual Ig-domains D1 or D2 of the extracellular part of ICAM-4 showed that LFA-1 binds to the first Ig-like domain, whereas the Mac-1 binding site encompassed both the first and the second Ig-like domains. Based on the crystal structure of ICAM-2, we propose a model for the Ig-like domains D1 and D2 of ICAM-4. Accordingly, by site-directed mutagenesis of 22 amino acid positions spread out on all faces of the ICAM-4 molecule, we identified four exposed residues, Leu(80), Trp(93), and Arg(97) on the CFG face and Trp(77) on the E-F loop of domain D1 that may contact LFA-1 as part of the binding site. However, the single and double mutants R52E and T91Q on the CFG face of domain D1, which correspond to the key residues Glu(34) and Gln(73) for ICAM-1 binding to LFA-1, had no effect on LFA-1 binding. In contrast, all mutants on the CFG face of domain D1 and residues Glu(151) and Thr(154) in the C'-E loop of the domain D2 seem to play a dominant role in Mac-1 binding. These data suggest that the binding site for LFA-1 on ICAM-4 overlaps but is distinct from the Mac-1 binding site.  相似文献   

19.
Intercellular adhesion molecule-1 (ICAM-1) occurs as both a membrane and a soluble, secreted glycoprotein (sICAM-1). ICAM-1 on endothelial cells mediates leukocyte adhesion by binding to leukocyte function associated antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1). Recombinant mouse sICAM-1 induces the production of macrophage inflammatory protein-2 (MIP-2) in mouse astrocytes by a novel LFA-1- and Mac-1-independent mechanism. Here we showed that N-glycan structures of sICAM-1 influence its ability to induce MIP-2 production. sICAM-1 expressed in Chinese hamster ovary (CHO) cells was a more potent inducer of MIP-2 production than sICAM-1 expressed in HEK 293 cells, suggesting that posttranslational modification of sICAM-1 could influence its signaling activity. To explore the roles of glycosylation in sICAM-1 activity, we expressed sICAM-1 in mutant CHO cell lines differing in glycosylation, including Lec2, Lec8, and Lec1 as well as in CHO cells cultured in the presence of the alpha-mannosidase-I inhibitor kifunensine. Signaling activity of sICAM-1 lacking sialic acid was reduced 3-fold compared with sICAM-1 from CHO cells. The activity of sICAM-1 lacking both sialic acid and galactose was reduced 12-fold, whereas the activity of sICAM-1 carrying only high mannose-type N-glycans was reduced 12-26-fold. sICAM-1 glycoforms carrying truncated glycans retained full ability to bind to LFA-1 on leukocytes. Thus, sialylated and galactosylated complex-type N-glycans strongly enhanced the ability of sICAM-1 to induce MIP-2 production in astrocytes but did not alter its binding to LFA-1 on leukocytes. Glycosylation could therefore serve as a means to regulate specifically the signaling function of sICAM-1 in vivo.  相似文献   

20.
Adult cardiac myocytes express intercellular adhesion molecule (ICAM)-1 in response to cytokine stimulation. This allows stable adhesion of chemotactically stimulated but not unstimulated neutrophils. In the current study, we demonstrated that brief exposure of ICAM-1-expressing cardiac myocytes to H(2)O(2) promoted transient adhesive interactions between myocytes and neutrophils without added chemotactic factors. This transient adhesion differed in two ways from the stable adhesion promoted by exogenous chemotactic factors. It occurred more rapidly, peaking within 15 min, and it was dependent on leukocyte function-associated antigen (LFA)-1 (CD11a/CD18) on the neutrophil interacting with ICAM-1 on the myocyte. In contrast, chemotactic factor-induced adhesion peaked at 60 min and was dependent on Mac-1 (CD11b/CD18). The transient adhesion could be completely inhibited by platelet-activating factor (PAF)-receptor antagonists WEB-2086 and SDZ-64-412. These results indicate that canine neutrophils may utilize both LFA-1 and Mac-1 to adhere to adult cardiac myocytes, with LFA-1 triggered by a PAF-like activity induced in myocytes by H(2)O(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号