首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Obelin from the hydroid Obelia longissima and aequorin are members of a subfamily of Ca(2+)-regulated photoproteins that is a part of the larger EF-hand calcium binding protein family. On the addition of Ca(2+), obelin generates a blue bioluminescence emission (lambda(max) = 485 nm) as the result of the oxidative decarboxylation of the bound substrate, coelenterazine. The W92F obelin mutant is noteworthy because of the unusually high speed with which it responds to sudden changes of [Ca(2+)] and because it emits violet light rather than blue due to a prominent band with lambda(max) = 405 nm. Increase of pH in the range from 5.5 to 8.5 and using D(2)O both diminish the contribution of the 405 nm band, indicating that excited state proton transfer is involved. Fluorescence model studies have suggested the origin of the 485 nm emission as the excited state of an anion of coelenteramide, the bioluminescence reaction product, and 405 nm from the excited neutral state. Assuming that the dimensions of the substrate binding cavity do not change during the excited state formation, a His22 residue within hydrogen bonding distance to the 6-(p-hydroxy)-phenyl group of the excited coelenteramide is a likely candidate for accepting the phenol proton to produce an ion-pair excited state, in support of recent suggestions for the bioluminescence emitting state. The proton transfer could be impeded by removal of the Trp92 H-bond, resulting in strong enhancement of a 405 nm band giving the violet color of bioluminescence. Comparative analysis of 3D structures of the wild-type (WT) and W92F obelins reveals that there are structural displacements of certain key Ca(2+)-ligating residues in the loops of the two C-terminal EF hands as well as clear differences in hydrogen bond networks in W92F. For instance, the hydrogen bond between the side-chain oxygen atom of Asp169 and the main-chain nitrogen of Arg112 binds together the incoming alpha-helix of loop III and the exiting alpha-helix of loop IV in WT, providing probably concerted changes in these EF hands on calcium binding. But this linkage is not found in W92F obelin. These differences apparently do not change the overall affinity to calcium of W92F obelin but may account for the kinetic differences between the WT and mutant obelins. From analysis of the hydrogen bond network in the coelenterazine binding cavity, it is proposed that the trigger for bioluminescence reaction in these Ca(2+)-regulated photoproteins may be a shift of the hydrogen bond donor-acceptor separations around the coelenterazine-2-hydroperoxy substrate, initiated by small spatial adjustment of the exiting alpha-helix of loop IV.  相似文献   

2.
A cDNA encoding the Ca2+-regulated photoprotein of the bioluminescent marine hydroid Obelia geniculata was cloned and sequenced. The cDNA is a 774 bp fragment containing two overlapping open reading frames, one of which contained 585 bp encoding a 195 amino acid polypeptide which obviously has the primary structure of the apoprotein of a calcium-regulated photoprotein. Many of the residues are identical to those in other Ca2+-regulated photoproteins: 86% compared with that from Obelia longissima, 76% with that from Clytia (Phialidium), 64% with that from Aequorea, and 64% with that from Mitrocoma(Halistaura). The obelin from O. geniculata was overexpressed in Escherichia coli, refolded from inclusion bodies, and purified. The yield of highly purified recombinant protein was 55-80 mg/L of LB medium. O. geniculata obelin has absorption maxima at 280 and 460 nm and a shoulder at approximately 310 nm. The calcium-discharged protein loses visible absorption but exhibits a new absorption maximum at 343 nm. The bioluminescence of the obelin from O. geniculata is blue (lambda(max) = 495 nm). In contrast, the fluorescence of the calcium-discharged protein is yellow-green (lambda(max) = 520 nm; excitation at 340 nm). This is in sharp contrast to aequorin in which the bioluminescence and fluorescence emission spectra of the calcium-discharged protein are almost identical (lambda(max) = 465 nm). The Ca2+ concentration-effect curve for O. geniculata obelin is similar to those of many other photoproteins: at [Ca2+] below approximately 10(-8) M, calcium-independent luminescence is observed, and at [Ca2+] approximately 10(-3) M, the luminescence reaches a maximum. Between these extremes, the curve spans a vertical range of almost 8 log units with a maximum slope on a log-log plot of about 2.5. In the absence of Mg2+ the rate constant for the rise of bioluminescence determined by the stopped-flow technique is about 450 s(-1). The effects of Mg2+ on the kinetics of bioluminescence are complicated, but at all concentrations studied they are relatively small compared to the corresponding effects on aequorin luminescence. At least with respect to speed and sensitivity to Mg2+, the obelins from both O. longissima and O. geniculata would appear to be more suitable than aequorin for use as intracellular Ca2+ indicators.  相似文献   

3.
The calcium-binding photoprotein obelin extracted and purified from the luminescent hydroid Obelia longissima was used to record the processes of Ca2+ release from proteoliposomes. It has been shown that lecithin proteoliposomes with incorporated rabbit skeletal muscle T-system membranes possess a BAY K-8644-activated permeability which is inhibited by nitrendipine. The Ca(2+)-activated photoprotein obelin is a convenient and perspective tool in studies of fast calcium fluxes.  相似文献   

4.
The marine polyp Obelia longissima produces a protein, obelin, which emits light in a calcium-dependent manner. This photoprotein consists of a stable complex of its apoprotein, a chromophore, and oxygen. In the presence of calcium ions, the protein undergoes a change in conformation that allows it to catalyze the oxidation of the chromophore, coelenterazine, to coelenteramide with the release of light and CO2. Photoproteins are attractive as labels in analytical applications because the bioluminescent signal that they produce is the result of a chemical reaction and, therefore, has virtually no background. Thus, bioluminescence allows for extremely sensitive detection. In that regard, the feasibility of using obelin as a label has been explored with the development of a competitive immunoassay for the determination of a small peptide analyte. To attach the obelin label in a controlled manner to the octapeptide, a fusion protein was produced using recombinant DNA techniques. The protein consisted of the C-terminus of the peptide fused to the N-terminus of obelin. The octapeptide-obelin fusion protein retained the bioluminescence properties of the native protein, and was subsequently used to generate dose-response curves for the free octapeptide.  相似文献   

5.
The Ca(2+)-regulated photoprotein obelin was substituted at Trp92 by His, Lys, Glu, and Arg. All mutants fold into stable conformations and produce bimodal bioluminescence spectra with enhanced contribution from a violet emission. The W92R mutant has an almost monomodal bioluminescence (lambdamax=390 nm) and monomodal fluorescence (lambdamax=425 nm) of the product. Results are interpreted by an excited state proton transfer mechanism involving the substituent side group and His22 in the binding cavity.  相似文献   

6.
The crystal structure of the photoprotein obelin (22.2 kDa) from Obelia longissima has been determined and refined to 1.7 A resolution. Contrary to the prediction of a peroxide, the noncovalently bound substrate, coelenterazine, has only a single oxygen atom bound at the C2-position. The protein-coelenterazine 2-oxy complex observed in the crystals is photo-active because, in the presence of calcium ion, bioluminescence emission within the crystal is observed. This structure represents only the second de novo protein structure determined using the anomalous scattering signal of the sulfur substructure in the crystal. The method used here is theoretically different from that used for crambin in 1981 (4.72 kDa) and represents a significant advancement in protein crystal structure determination.  相似文献   

7.
The bioluminescence emitted by Aequorea victoria jellyfish is greenish while its single bioluminescent photoprotein aequorin emits blue light. This phenomenon may be explained by a bioluminescence resonance energy transfer (BRET) from aequorin chromophore to green fluorescent protein (GFP) co-localized with it. However, a slight overlapping of the aequorin bioluminescence spectrum with the GFP absorption spectrum and the absence of marked interaction between these proteins in vitro pose a question on the mechanism providing the efficient BRET in A. victoria. Here we report the in vitro study of BRET between homologous Ca(2+)-activated photoproteins, aequorin or obelin (Obelia longissima), as bioluminescence energy donors, and GFP, as an acceptor. The fusions containing donor and acceptor proteins linked by a 19 aa peptide were purified after expressing their genes in Escherichia coli cells. It was shown that the GFP-aequorin fusion has a significantly greater BRET efficiency, compared to the GFP-obelin fusion. Two main factors responsible for the difference in BRET efficiency of these fusions were revealed. First, it is the presence of Ca(2+)-induced interaction between the donor and acceptor in the aequorin-containing fusion and the absence of the interaction in the obelin-containing fusion. Second, it is a red shift of GFP absorption toward better overlapping with aequorin bioluminescence induced by the interaction of aequorin with GFP. Since the connection of the two proteins in vitro mimics their proximity in vivo, Ca(2+)-induced interaction between aequorin and GFP may occur in A. victoria jellyfish providing efficient BRET in this organism.  相似文献   

8.
1. A method has been developed to incorporate the apoprotein of the Ca2+-activated photoprotein obelin, and mRNA purified from the hydroid Obelia, into the cytoplasm of intact human neutrophils. This was based on internal release from pH-sensitive immunoliposomes taken up initially by phagocytosis. 2. Addition of the prosthetic group of obelin, coelenterazine, to these cells containing apo-obelin or Obelia mRNA resulted in formation of active Ca2+-activated obelin. 3. The obelin formed within the neutrophils responded to the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (1 microM) and to the membrane attack complex of complement (C5B6789n). 4. The formation of the apo-obelin from mRNA within neutrophils was inhibited by over 80% in the absence of added amino acids, and by over 90% by the protein-synthesis inhibitor puromycin (100 micrograms/ml). 5. The translation of Obelia mRNA inside cells provides a method for circumventing consumption of Ca2+-activated photoproteins during cell activation or injury, and for monitoring protein synthesis in living cells.  相似文献   

9.
Recombinant plasmids containing genes for the green fluorescent protein (GFP) from Aequorea victoria and the photoprotein obelin from Obelia longissima linked in-frame by inserts differing in nucleotide sequences were constructed. The expression of the chimeric genes in Escherichia coli cells resulted in synthesis of the GFP-obelin hybrid proteins. These proteins were purified to homogeneity and subjected to limited trypsinolysis. It was shown that the resistance of GFP-obelin hybrid proteins to trypsin depends on the nature of their constituent modules and the amino acid sequences of linkers between the modules. The kinetics of accumulation of full-length hybrid proteins during the growth of bacterial cells does not depend on the structure of the peptide linkers. Most of the full-length product accumulates in cells in the form of inclusion bodies resistant to endogenous proteases. The soluble fraction of the protein undergoes considerable proteolysis regardless of the linker structure.  相似文献   

10.
Solid-phase bioluminescent immunoassay of thyroid hormones, human thyrotropin (hTSH) and two forms of thyroxine (T4), whose determinations are vitally important for diagnostics of thyroid diseases and the efficiency of treatment, is described. The recombinant obelin, a Ca(2+)-regulated photoprotein originally derived from the luminous marine hydroid Obelia longissima, is employed as a bioluminescent label. To produce obelin conjugates with anti-hTSH, anti-T4 immunoglobulins (IgG), and T4, additional SH groups are introduced into the obelin molecule using Traut's reagent (2-iminothiolane) and then obelin possessing extra SH groups is conjugated with succinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate-activated IgGs or T4. The total yield of obelin conjugates determined by luminescent activity is 60-65% after all chemical and purification procedures. The obtained conjugates are stable to lyophilization and in solution for at least 9 months at 4 degrees C, with loss of activity not exceeding 10%. The application of obelin conjugates for determination of the hTSH, total T4, and free T4 in standard, control, and patient sera displays high sensitivity and reproducibility of results. The results of bioluminescent immunoassays are closely comparable to those obtained by the radioimmunoassay method (R=0.95-0.99).  相似文献   

11.
The presence of two spectral mechanisms, near-ultraviolet and green (lambda(max)=545nm), is strongly suggested by electroretinographic visual spectral sensitivity curves obtained under dark and red chromatic adaptation conditions in the compound eyes of the click beetle Pyrophorus punctatissimus. The bioluminescence emission of the dorsal prothoracic lanterns is deep green (lambda(max)=543nm) and that of the ventral abdominal lantern is lime green (lambda(max)=556nm) in colour in P. punctatissimus. A broad green visual receptor would detect both deep green and lime green bioluminescent optical signals.  相似文献   

12.
13.
C Longstaff  R R Rando 《Biochemistry》1987,26(19):6107-6113
Bacteriorhodopsin (bR) in purple membranes was permethylated with formaldehyde and pyridine-borane with the incorporation of approximately 12 methyl groups. This new pigment, PMbR, absorbed light in the dark-adapted state with a lambda max at 558 nm, virtually the same as that of bR. Light adaptation of PMbR produced a lambda max of 564 nm with a slightly elevated epsilon. Similar changes occurred with bR. When incorporated into asolectin vesicles, PMbR was able to pump protons in the light with an efficiency similar to that of bR itself. Bleaching of PMbR exposed its active site lysine residue, which was monomethylated to form active site methylated bR (AMbR) after regeneration with all-trans-retinal. This blue pigment, which is a cyanopsin rather than a rhodopsin, showed an extraordinary red shift, absorbing light with a lambda max of 620 nm in the dark-adapted state. Light adaptation of AMbR resulted in a spectral shift to 616 nm with a decrease in epsilon. This change was completely reversible in the dark. This shift was interpreted to mean that an L-like intermediate was accumulating, as would be expected if deprotonation of the protonated Schiff base could not occur to produce the M intermediate. Furthermore, when incorporated into asolectin vesicles, AMbR proved incapable of pumping protons in the light. It was concluded from these experiments that deprotonation of the Schiff base of bR is obligate for light-induced proton pumping.  相似文献   

14.
Light-sensitive Ca(2+) -regulated photoproteins are responsible for the bright bioluminescence of ctenophores. Using functional screening, four full-size cDNA genes encoding the same 208-amino-acid polypeptide were isolated from two independent cDNA libraries prepared from two Beroe abyssicola specimens. Sequence analysis revealed three canonical EF-hand calcium-binding sites characteristic of Ca(2+) -regulated photoproteins, but a very low degree of sequence identity (27-29%) with aequorin-type photoproteins, despite functional similarities. Recombinant berovin was expressed in Escherichia coli cells, purified, converted to active photoprotein and characterized. Active berovin has absorption maxima at 280 and 437 nm. The Ca(2+) -discharged protein loses visible absorption, but exhibits a new absorption maximum at 335 nm. The berovin bioluminescence is blue (λ(max) = 491 nm) and a change in pH over the range 6.0-9.5 has no significant effect on the light emission spectrum. By contrast, the fluorescence of Ca(2+) -discharged protein (λ(ex) = 350 nm) is pH sensitive: at neutral pH the maximum is at 420 nm and at alkaline pH there are two maxima at 410 and 485 nm. Like native ctenophore photoproteins, recombinant berovin is also inactivated by light. The Ca(2+) concentration-effect curve is a sigmoid with a slope on a log-log plot of ~ 2.5. Although this curve for berovin is very similar to those obtained for obelin and aequorin, there are evident distinctions: berovin responds to calcium changes at lower concentrations than jellyfish photoproteins and its Ca(2+) -independent luminescence is low. Recombinant berovin was successfully expressed in mammalian cells, thereby demonstrating potential for monitoring intracellular calcium. Database The nucleotide sequences have been deposited in the GenBankTM/EBI Data Bank with accession numbers: apoberovin cDNA genes, JN673813 (BA1), JN673814 (BA2), JN673815 (BA3), JN673816 (BA4); fragment 18S rRNA, JN673817 (BA-rRNA5).  相似文献   

15.
Ca2+-regulated photoproteins are members of the EF-hand calcium-binding protein family. The addition of Ca2+ produces a blue bioluminescence by triggering a decarboxylation reaction of protein-bound hydroperoxycoelenterazine to form the product, coelenteramide, in an excited state. Based on the spatial structures of aequorin and several obelins, we have postulated mechanisms for the Ca2+ trigger and for generation of the different excited states that are the origin of the different colors of bioluminescence. Here we report the crystal structure of the Ca2+-discharged photoprotein obelin at 1.96-A resolution. The results lend support to the proposed mechanisms and provide new structural insight into details of these processes. Global conformational changes caused by Ca2+ association are typical of the class of calcium signal modulators within the EF-hand protein superfamily. Accommodation of the Ca2+ ions into the loops of the EF-hands is seen to propagate into the active site of the protein now occupied by the coelenteramide where there is a significant repositioning and flipping of the His-175 imidazole ring as crucially required in the trigger hypothesis. Also the H-bonding between His-22 and the coelenterazine found in the active photoprotein is preserved at the equivalent position of coelenteramide, confirming the proposed rapid excited state proton transfer that would lead to the excited state of the phenolate ion pair, which is responsible for the blue emission of bioluminescence.  相似文献   

16.
The bioluminescence spectra from the Ca2+-regulated photoproteins aequorin (lambdamax=469 nm) and obelin (lambdamax=482 nm) differ because aequorin has an H-bond from its Tyr82 to the bound coelenteramide, not present in obelin at the corresponding Phe88. Substitutions of this Phe88 by Tyr, Trp, or His shifted the obelin bioluminescence to shorter wavelength with F88Y having lambdamax=453 nm. Removal of the H-bond by the substitution of Y82F in aequorin shifted its bioluminescence to lambdamax=501 nm. All mutants were stable with good activity and were expressible in mammalian cells, thereby demonstrating potential for monitoring multiple events in cells using multi-color detection.  相似文献   

17.
Recombinant plasmids containing genes for the green fluorescent protein (GFP) from Aequorea victoriaand the photoprotein obelin from Obelia longissimalinked in-frame by inserts differing in nucleotides sequences were constructed. The expression of the chimeric genes in Escherichia colicells resulted in synthesis of the GFP–obelin hybrid proteins. These proteins were purified to homogeneity and subjected to limited trypsinolysis. It was shown that the resistance of GFP–obelin hybrid proteins to trypsin depends on the nature of their constituent modules and the amino acid sequences of linkers between the modules. The kinetics of accumulation of full-length hybrid proteins during the growth of bacterial cells does not depend on the structure of the peptide linkers. Most of the full-length product accumulates in cells in the form of inclusion bodies resistant to endogenous proteases. The soluble fraction of the protein undergoes considerable proteolysis regardless of the linker structure.  相似文献   

18.
A high-active stable preparation of obelin has been obtained from the luminescent hydroid Obelia longissima. The preparation is appropriate for determining free Ca2+ in the physiological range of its concentrations Obelin is shown possible to be used to record the processes of Ca2+ release from vesicles of the sarcoplasmic reticulum. In this case a rapid initial phase of Ca2+ outflux replaced by a slower one has been registered. A sharp increase of luminescence caused by the appearance of free Ca2+ in the medium has been registered under the effect of agents either increasing permeability of sarcoplasmic reticulum membranes for Ca2+ (A23187) or destroying the membrane (ethanol, triton X-100). The observed effects are confirmed, a radioactive label being used.  相似文献   

19.
Green-fluorescent protein (GFP) is the origin of the green bioluminescence color exhibited by several marine hydrozoans and anthozoans. The mechanism is believed to be Fo?rster resonance energy transfer (FRET) within a luciferase-GFP or photoprotein-GFP complex. As the effect is found in vitro at micromolar concentrations, for FRET to occur this complex must have an affinity in the micromolar range. We present here a fluorescence dynamics investigation of the recombinant bioluminescence proteins from the jellyfish Clytia gregaria, the photoprotein clytin in its Ca(2+)-discharged form that is highly fluorescent (λ(max) = 506 nm) and its GFP (cgreGFP; λ(max) = 500 nm). Ca(2+)-discharged clytin shows a predominant fluorescence lifetime of 5.7 ns, which is assigned to the final emitting state of the bioluminescence reaction product, coelenteramide anion, and a fluorescence anisotropy decay or rotational correlation time of 12 ns (20 °C), consistent with tight binding and rotation with the whole protein. A 34 ns correlation time combined with a translational diffusion constant and molecular brightness from fluorescence fluctuation spectroscopy all confirm that cgreGFP is an obligate dimer down to nanomolar concentrations. Within the dimer, the two chromophores have a coupled excited-state transition yielding fluorescence depolarization via FRET with a transfer correlation time of 0.5 ns. The 34 ns time of cgreGFP showed no change upon addition of a 1000-fold excess of Ca(2+)-discharged clytin, indicating no stable complexation below 0.2 mM. It is proposed that any bioluminescence FRET complex with micromolar affinity must be one formed transiently by the cgreGFP dimer with a short-lived (millisecond) intermediate in the clytin reaction pathway.  相似文献   

20.
It is shown that the activity of aldolase synthesized in rabbit muscles under diabetes is higher than that at normal state. This fact is probably a result of some structural alterations in NAD-binding site with Trp-291 and -311 in it which overlaps a considerable part of C-terminal region of the protein. The hydrophobic part of the enzyme containing Trp-147 under diabetes seems to remain unaltered. This consideration is based on the longwave shift in aldolase fluorescence lambda max (from 320 to 324 nm) under this pathology, suggesting a transition of Trp-291 and -311 into more polar environment and is confirmed by the disappearance of the difference in lambda max in the NADH presence. The NADH-originated shift in lambda max position for the both proteins ended at the same wave-length at 314 nm. The position of lambda max at 324 nm resulting from possible structural modification of NAD-binding site under diabetes correlates with an increase in the Stern-Volmer quenching constant value (from 4359 to 7500 M-1 for aldolase under normal and diabetic states, respectively). These quenching data evidence in favour of the suggestion on the existence of two classes of tryptophanyls in the aldolase molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号