首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different branchs of industry need to use ethanol in their production and some progress and not only the industry also to determine ethanol sensitively, accurately, fast and economical is very important. For the sensitive determination of ethanol a new amperometric biosensor based on Candida tropicalis cells, which contains alcohol oxidase enzyme, immobilized in gelatin by using glutaraldehyde was developed. In the study, before the microbial biosensor construction C. tropicalis cells were activated and cultured in a culture medium. By using gelatine and glutaraldehyde (0.1%) C. tropicalis cells obtained in logarithmic phase were immobilized and fixed on a pretreated teflon membrane of a dissolved oxygen probe. Ethanol determination is based on the assay of the differences on the respiration activity of the cells on the oxygenmeter in the absence and the presence of ethanol. The microbial biosensor response was depend linearly on ethanol concentration between 0.5 and 7.5 mM with 2 min response time. In the optimization studies of the microbial biosensor the most suitable microorganism amount were found as 4.42 mg cm(-2) and also phosphate buffer (pH:7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In the characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the biosensor response, operational and storage stability were carried out.  相似文献   

2.
A new amperometric whole cell biosensor based on Saccharomyces cerevisiae immobilized in gelatin was developed for selective determination of vitamin B1 (thiamine). The biosensor was constructed by using gelatin and crosslinking agent glutaraldehyde to immobilize S. cerevisiae cells on the Teflon membrane of dissolved oxygen (DO) probe used as the basic electrode system combined with a digital oxygen meter. The cells were induced by vitamin B1 in the culture medium, and the cells used it as a carbon source in the absence of glucose. So, when the vitamin B1 solution is injected into the whole cell biosensor system, an increase in respiration activity of the cells results from the metabolic activity and causes a decrease in the DO concentration of interval surface of DO probe related to vitamin B1 concentration. The response time of the biosensor is 3 min, and the optimal working conditions of the biosensor were carried out as pH 7.0, 50mM Tris-HCl, and 30 degrees C. A linear relationship was obtained between the DO concentration decrease and vitamin B1 concentration between 5.0 x 10(-3) and 10(-1) microM. In the application studies of the biosensor, sensitive determination of vitamin B1 in the vitamin tablets was investigated.  相似文献   

3.
A nylon membrane based amperometric biosensor employing banana fruit polyphenol oxidase (PPO) is presented for polyphenol detection. Nylon membrane was first activated and then coupled with chitosan. PPO was covalently attached to this membrane through glutaraldehyde coupling. The membrane bioconjugate was characterized by scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) study and then mounted onto Au electrode using parafilm to construct a working electrode. Once assembled along with Ag/AgCl as reference and Pt as auxiliary electrode, the biosensor gave optimum response within 15 s at pH 7.5 and 30 °C, when polarized at +0.4 V. The response (in mA) was directly proportional to polyphenol concentration in the range 0.2–400 μM. The lower detection limit of the biosensor was 0.2 μM. The biosensor was employed for determination of polyphenols in tea, beverages and water samples. The enzyme electrode showed 25% decrease in initial activity after 150 reuses over 6 months, when stored at 4 °C.  相似文献   

4.
Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N‐acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L‐tryptophan hydroxylase, a 5‐hydroxy‐L‐tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O‐methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co‐factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L?1 in a 76h fermentation using simulated fed‐batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin.  相似文献   

5.
6.
7.
The GAL1 promoter is one of the strongest inducible promoters in the yeast Saccharomyces cerevisiae. In order to improve recombinant protein production we have developed a fluorescence based method for screening and evaluating the contribution of various gene deletions to protein expression from the GAL1 promoter. The level of protein synthesis was determined in 28 selected mutant strains simultaneously, by direct measurement of fluorescence in living cells using a microplate reader. The highest, 2.4-fold increase in GFP production was observed in a gal1 mutant strain. Deletion of GAL80 caused a 1.3-fold increase in fluorescence relative to the isogenic strain. GAL3, GAL4 and MTH1 gene deletion completely abrogated GFP synthesis. Growth of gal7, gal10 and gal3 also exhibited reduced fitness in galactose medium. Other genetic perturbations affected the GFP expression level only moderately. The fluorescence based method proved to be useful for screening genes involved in GAL1 promoter regulation and provides insight into more efficient manipulation of the GAL system.  相似文献   

8.
A method is described for construction of a novel amperometric triglyceride (TG) biosensor based on covalent co-immobilization of lipase, glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) onto chitosan (CHIT) and zinc oxide nanoparticles (ZnONPs) composite film deposited on the surface of Pt electrode. The enzymes-ZnONPs-CHIT composite was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor showed optimum response within 6 s at pH 7.5 and temperature of 35 °C. The sensor measures current due to electrons generated at 0.4 V against Ag/AgCl from H2O2, which is produced from triolein by co-immobilized enzymes. A linear relationship was obtained between a wide triolein concentration range (50-650 mg/dl) and current (mA) under optimum conditions. The biosensor showed high sensitivity, low detection limit (20 mg/dl) and good storage stability (half-life of 7 months at 4 °C). The biosensor was unaffected modified by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of TG in sera in apparently healthy subjects and persons suffering from hypertriglyceridemia.  相似文献   

9.
Separate compartments of the yeast cell possess their own exopolyphosphatases differing from each other in their properties and dependence on culture conditions. The low-molecular-mass exopolyphosphatases of the cytosol, cell envelope, and mitochondrial matrix are encoded by the PPX1 gene, while the high-molecular-mass exopolyphosphatase of the cytosol and those of the vacuoles, mitochondrial membranes, and nuclei are presumably encoded by their own genes. Based on recent works, a preliminary classification of the yeast exopolyphosphatases is proposed.  相似文献   

10.
Summary Sucrose hydrolysis by invertase-active yeast cells (S. cerevisiae) entrapped in gelatin was investigated using different types of miniaturized reactors. The entrapped preparations showed the highest operational stability in a continuous stirred-tank reactor. The invertase activity of the entrapped preparation was found to be almost independent of the buffer concentration so that sucrose invermay be conducted in a non-buffered medium.  相似文献   

11.
Amperometric biosensors based on gold planar or nanocomposite electrode containing multiwalled carbon nanotubes for determination of glycerol were developed. The biosensors were constructed by immobilization of a novel multienzyme cascade consisting of glycerol kinase/creatine kinase/creatinase/sarcosine oxidase/peroxidase between a chitosan "sandwich." A measuring buffer contained adenosine 5'-triphosphate (ATP), creatine phosphate, and an artificial electrochemical mediator ferrocyanide. The currents proportional to glycerol concentration were measured at working potential of -50 mV against Ag/AgCl reference electrode. The biosensors showed linearity over the ranges of 5-640 μM and 5-566 μM with detection limits of 1.96 and 2.24 μM and sensitivities of 0.80 and 0.81 nA μM(-1), respectively. Both types of biosensors had a response time of 70s. The biosensors demonstrated satisfactory operational stability (no loss of sensitivity after 90 consecutive measurements) and excellent storage stability (90% of the initial sensitivity after 15 months of storage at room temperature). The results obtained from measurements of wines correlated well with those obtained with an enzymatic-spectrophotometric assay. The presented multienzyme cascade can be used also for determination of triglycerides or various kinase substrates when glycerol kinase is replaced by other kinases.  相似文献   

12.
A novel method for lactose determination in milk is proposed. It is based on oxidation of lactose by cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete chrysosporium, immobilised in an enzyme reactor. The reactor was prepared by cross-linking CDH onto aminopropyl-silanised controlled pore glass (CPG) beads using glutaraldehyde. The combined biosensor worked in flow injection analysis (FIA) mode and was developed for simultaneous monitoring of the thermometric signal associated with the enzymatic oxidation of lactose using p-benzoquinone as electron acceptor and the electrochemically generated current associated with the oxidation of the hydroquinone formed. A highly reproducible linear response for lactose was obtained between 0.05 mM and 30 mM. For a set of more than 500 samples an R.S.D. of less than 10% was achieved. The assay time was ca. 2 min per sample. The sensor was applied for the determination of lactose in dairy milk samples (milk with a fat content of 1.5% or 3% and also "lactose free" milk). No sample preparation except dilution with buffer was needed. The proposed method is rapid, suitable for repeated use and allows the possibility to compare results from two different detection methods, thus providing a built-in quality assurance. Some differences in the response observed between the methods indicate that the dual approach can be useful in mechanistic studies of redox enzymes. In addition, a dual system opens up interesting possibilities for studies of enzyme properties and mechanisms.  相似文献   

13.
The state of water in partially destroyed dry yeast cells has been studied using low-temperature 1H NMR spectroscopy. It has been shown that the residual water is in the form of clusters of strongly and weakly associated water (SAW and WAW, respectively). Three or more types of SAW different in the chemical shift values have been found. It has been established that the interfacial water poorly dissolves hydrochloric and trifluoroacetic acids as well as DMSO and CD3CN. Hydrochloric acid on a surface of biomaterials can be separated into HCl and water. This process is stabilized by polar co-solvents (DMSO and CD3CN) added to the CDCl3 dispersion medium.  相似文献   

14.
A screen-printed enzyme electrode based on flavocytochrome P450scc (RfP450scc) for amperometric determination of cholesterol has been developed. A one-step method for RfP450scc immobilization in the presence of glutaraldehyde or by entrapment of enzyme within a hydrogel of agarose is discussed. The sensitivity of the biosensor based on immobilization procedures of flavocytochrome P450scc by glutaric aldehyde is 13.8 nA microM(-1) and the detection limit is 300 microM with a coefficient of linearity 0.98 for cholesterol in the presence of sodium cholate as detergent. The detection limits and the sensitivity of the agarose-based electrode are 155 microM and 6.9 nA microM(-1) with a linearity coefficient of 0.99. For both types of electrodes, the amperometric response to cholesterol in the presence of detergent was rather quick (1.5-2 min).  相似文献   

15.
A synthetic cruciform DNA (X-DNA) was used for screening cellular extracts of Saccharomyces cerevisiae for X-DNA-binding activity. Three X-DNA-binding proteins with apparent molecular mass of 28kDa, 26kDa and 24kDa, estimated by SDS-PAGE, were partially purified. They were identified as N-terminal fragments originating from the same putative protein, encoded by the open reading frame YHR146W, which we named CRP1 (cruciform DNA-recognising protein 1). Expression of CRP1 in Escherichia coli showed that Crp1p is subject to efficient proteolysis at one specific site. Cleavage leads to an N-terminal subpeptide of approximately 160 amino acid residues that is capable of binding specifically X-DNA with an estimated dissociation constant (K(d)) of 800nM, and a C-terminal subpeptide of approximately 305 residues without intrinsic X-DNA-binding activity. The N-terminal subpeptide is of a size similarly to that of the fragments identified in yeast, suggesting that the same cleavage process occurs in the yeast and the E.coli background. This makes the action of a site-specific protease unlikely and favours the possibility of an autoproteolytic activity of Crp1p. The DNA-binding domain of Crp1p was mapped to positions 120-141. This domain can act autonomously as an X-DNA-binding peptide and provides a new, lysine-rich DNA-binding domain different from those of known cruciform DNA-binding proteins (CBPs). As reported earlier for several other CBPs, Crp1p exerts an enhancing effect on the cleavage of X-DNA by endonuclease VII from bacteriophage T4.  相似文献   

16.
A novel L-arginine-selective amperometric bi-enzyme biosensor based on recombinant human arginase I isolated from the gene-engineered strain of methylotrophic yeast Hansenula polymorpha and commercial urease is described. The biosensing layer was placed onto a polyaniline-Nafion composite platinum electrode and covered with a calcium alginate gel. The developed sensor revealed a good selectivity to L-arginine. The sensitivity of the biosensor was 110 ± 1.3 nA/(mM mm(2)) with the apparent Michaelis-Menten constant (K(M)(app)) derived from an L-arginine (L-Arg) calibration curve of 1.27 ± 0.29 mM. A linear concentration range was observed from 0.07 to 0.6mM, a limit of detection being 0.038 mM and a response time - 10s. The developed biosensor demonstrated good storage stability. A laboratory prototype of the proposed amperometric biosensor was applied to the samples of three commercial pharmaceuticals ("Tivortin", "Cytrarginine", "Aminoplazmal 10% E") for L-Arg testing. The obtained L-Arg-content values correlated well with those declared by producers.  相似文献   

17.
18.
Binding of Saccharomyces cerevisiae alpha-agglutinin to target a cells was assayed by agglutination inhibition and 125I-alpha-agglutinin binding. The assays showed characteristics of equilibrium binding, namely saturability, competability, and the establishment of a kinetic endpoint in the presence of free alpha-agglutinin and free receptor. The binding was heterogeneous, displaying strong binding (10(9) liters/mol) and a weaker interaction. There were about 2 X 10(4) strong binding sites per a cell. Denaturing gels displayed identical labeled species binding to the a cells in the weak and strong interactions. Furthermore, weakly bound material could subsequently bind tightly to fresh a cells, implying that the same species of alpha-agglutinin was bound in the two states.  相似文献   

19.
An amperometric biosensor was proposed for the enantioanalysis of L-lysine. The biosensor is based on the impregnation of L-lysine oxidase in diamond paste. The potential used for the determination of l-lysine was 650 mV. The biosensor exhibited a linear concentration range between 1 and 100 nmol/L with a limit of detection of 4 pmol/L. The selectivity of the biosensor is high over other amino acids, such as L-serine, L-leucine, L-aspartic acid, L-glutamic acid, histamine, glycine. The proposed biosensor can be applied for the determination of L-lysine in serum samples and pharmaceutical compounds.  相似文献   

20.
Summary Sixty-eight new conditional cell cycle mutants have been isolated on the basis of their terminal cellular morphology (dumbbells). Fifteen mutants falling into nine complementation groups, were grossly defective in DNA replication and have been assigned the provisional gene symboldbf (fordumbbellformer). Dbf1 and2 stop DNA synthesis immediately on transfer to 37°C and are presumably defective in enzymes required for polymerization. Neither, however, possess a thermolabile DNA polymerase A or B.Dbf3 and4 show a pattern of synthesis consistent with their being deficient in initiation of DNA synthesis. This is confirmed in the accompanying paper.The remaining mutants are deficient in the synthesis of RNA as well as DNA. Indeed the four members of one complementation group are allelic withrna3, one of the group of mutants originally isolated as defective in RNA synthesis, and which do not exhibit a cell cycle phenotype. A re-examination of this group of mutants however, showed the bulk of them also to be defective in DNA synthesis. Furthermore, in preliminary experimentsrna3 and our four new alleles of it, together withrna6 anddbf5 and6, showed enhanced spontaneous mutation frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号