首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic digestion would enable the energy potential of agricultural crop residues such as sugar beet tops and straw to be harnessed. Sweden is so spread out that full utilisation of this potential by centralised slurry-based technology is difficult. It appears that simple but effective high-solids reactor systems have a better chance of being economically viable on a farm-scale level (50–500 kW). In the present study, the financial prospects of high-solids digestion, using either single-stage fed-batch or two-stage batch reactor systems, are compared on a farm-scale level (50 kW) with those of conventional slurry digestion, on the basis of experimental results and observations on a laboratory- and pilot-scale. The gas produced can be used for heat, combined heat and power or as vehicle fuel. The results indicate high-solids single-stage fed-batch operations to stand the best chances of being competitive, particularly in connection with organic farming. The methane yield, degree of gas utilisation, and operational costs were found to have the strongest impact on the financial success of the process.  相似文献   

2.
Biogas production: current state and perspectives   总被引:16,自引:0,他引:16  
Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield.  相似文献   

3.
Anaerobic co-digestion of residues from the cold pressing and trans-esterification of oilseed rape (OSR) with other farm wastes was considered as a means of enhancing the sustainability of on-farm biodiesel production. The study verified the process energy yields using biochemical methane potential (BMP) tests and semi-continuous digestion trials. The results indicated that high proportions of OSR cake in the feedstock led to a decrease in volatile solids destruction and instability of the digestion process. Co-digestion with cattle slurry or with vegetable waste led to acceptable specific and volumetric methane productions, and a digestate low in potentially toxic elements (PTE). The results were used to evaluate energy balances and greenhouse gas emissions of the integrated process compared with biodiesel production alone. Co-digestion was shown to provide energy self-sufficiency and security of supply to farms, with sufficient surplus for export as fuel and electricity.  相似文献   

4.
Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).  相似文献   

5.
The potential of microalgae as a source of biofuels and as a technological solution for CO2 fixation is subject to intense academic and industrial research. In the perspective of setting up massive cultures, the management of large quantities of residual biomass and the high amounts of fertilizers must be considered. Anaerobic digestion is a key process that can solve this waste issue as well as the economical and energetic balance of such a promising technology. Indeed, the conversion of algal biomass after lipid extraction into methane is a process that can recover more energy than the energy from the cell lipids. Three main bottlenecks are identified to digest microalgae. First, the biodegradability of microalgae can be low depending on both the biochemical composition and the nature of the cell wall. Then, the high cellular protein content results in ammonia release which can lead to potential toxicity. Finally, the presence of sodium for marine species can also affect the digester performance. Physico-chemical pretreatment, co-digestion, or control of gross composition are strategies that can significantly and efficiently increase the conversion yield of the algal organic matter into methane. When the cell lipid content does not exceed 40%, anaerobic digestion of the whole biomass appears to be the optimal strategy on an energy balance basis, for the energetic recovery of cell biomass. Lastly, the ability of these CO2 consuming microalgae to purify biogas and concentrate methane is discussed.  相似文献   

6.
Thermophilic anaerobic digestion of solid waste for fuel gas production.   总被引:1,自引:0,他引:1  
Anaerobic digestion offers a potential means of converting organic solid waste into fuel gas and thereby provide a supplemental and readily utilizable source of energy. We are particularly interested in the use of thermophilic digestion over a mesophilic operation for it can achieve higher rates of digestion, greater conversion of waste organics to gas, faster solid-liquid separation, and minimization of bacterial and viral pathogen accumulation. Our results comparing mesophilic (37 degree C) and thermophilic (65 degree C) anaerobic digestion of domestic solid waste confirm the increased rate and conversion of waste to methane. In addition, utilizing radioactive labeling of glucose and acetic acid, we have measured the volumetric rates of volatile acid production and disappearance under both mesophilic and thermophilic conditions.  相似文献   

7.
The costs of producing protected vegetables comprise up to 78 % of the total operating costs in greenhouses. These expenses mainly result from energy consumption. Increasing energy efficiency and expanding the use of renewable energy sources are essential for global competitiveness. The aim of this study is to optimize methane production from miscanthus and to evaluate the potential use of miscanthus as a source of electrical energy, heat, and CO2 in vegetable greenhouses. To optimize methane yield, miscanthus was pretreated by steam explosion using different time/temperature combinations. Pretreatment resulted in a more than threefold increase of methane yield from anaerobic digestion (374 lN?kgVS?1) compared with untreated miscanthus. Based on technical parameters from two greenhouses (in Northern and Southern Europe), four different energy balances were established. The balances showed that using methane produced by pretreated miscanthus in vegetable greenhouses can enhance the entire process and therefore make it more sustainable.  相似文献   

8.
Anaerobic digestion of cattle manure was studied under thermophilic and mesophilic conditions with the purpose of evaluating the effect of temperature on the quality of the final digestate. Non-isothermal thermogravimetric kinetic analysis was applied for assessing organic matter conversion of biological stabilization. The mathematical approximation proves to be a useful tool for evaluating the differences attained during biological degradation. The anaerobic digestion of the organic substrate resulted in a reduction of the activation energy value obtained from the different applied kinetic models. Results obtained from thermal kinetic analysis were in accordance with those from the monitoring of the anaerobic digestion process. The higher values of methane yield reported for the mesophilic digestion in comparison to that of the thermophilic indicated a greater capability of the former process in the utilization of substrate and thus a higher conversion of organic matter which can be quantified by the activation energy value.  相似文献   

9.
Anaerobic digestion technology is the biological treatment of organic waste and wastewater without input of external electron acceptors (oxygen), offering the potential to reduce treatment cost and to produce energy as 'biogas' (methane) from organic waste. The technology has become enormously popular in the past two decades, and knowledge of microbiological aspects of the technology has also accumulated significantly. Major advances have been made in elucidating the diversity of yet-to-be cultured microbes in anaerobic digestion processes, and the cultivation of uncultured organisms is of great interest with regard to gaining insights into the function of these organisms. In addition, recent advances have been made in the development of microbial fuel cells as an alternative, direct energy-yielding treatment system.  相似文献   

10.
Zhang L  Lee YW  Jahng D 《Bioresource technology》2011,102(8):5048-5059
The objective of this study was to evaluate the feasibility of anaerobic co-digestion of food waste and piggery wastewater, and to identify the key factors governing the co-digestion performance. The analytical results indicated that the food waste contained higher energy potential and lower concentrations of trace elements than the piggery wastewater. Anaerobic co-digestion showed a significantly improved biogas productivity and process stability. The results of co-digestion of the food waste with the different fractions of the piggery wastewater suggested that trace element might be the reason for enhancing the co-digestion performance. By supplementing the trace elements, a long-term anaerobic digestion of the food waste only resulted in a high methane yield of 0.396 m3/kg VSadded and 75.6% of VS destruction with no significant volatile fatty acid accumulation. These results suggested that the typical Korean food waste was deficient with some trace elements required for anaerobic digestion.  相似文献   

11.

Background  

Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools.  相似文献   

12.
Inhibition of anaerobic digestion process: a review   总被引:38,自引:0,他引:38  
Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency.  相似文献   

13.
Several scenarios for ethanol production, methane production (by anaerobic digestion) and co-production of these, using autumn harvested hemp as substrate, were investigated and compared in terms of gross energy output. Steam pretreatment improved the methane production rate compared with mechanical grinding. The methane yield of steam pretreated stems was similar both with and without pre-hydrolysis with cellulolytic enzymes. Co-production of ethanol and methane from steam pretreated stems gave a high yield of transportation fuel, 11.1-11.7 MJ/kg processed stem dry matter (DM); more than twice that of ethanol production alone from hexoses, 4.4-5.1 MJ/kg processed stem DM. Co-production from the whole hemp plant would give 2600-3000 L ethanol and 2800-2900 m(3) methane, in total 171-180 GJ per 10,000 m(2) of agricultural land, based on a biomass yield of 16 Mg DM. Of this, the yeast and enzymes from ethanol production were estimated to contribute 700 m(3) (27 GJ) of methane.  相似文献   

14.
An anaerobic model for the serum bottle test was developed and analyzed with sensitivities of stoichiometric and kinetic parameters to the components in order to establish a basis for appropriate application of the model. Anaerobic glucose degradation in a serum bottle was selected as an example. The anaerobic model was developed based on the anaerobic digestion model no. 1 (ADM1), which had five processes with 17 kinetic and stoichiometric parameters. Sensitivity analysis showed that the yield of product on the substrate (f) has high sensitivities to model components, and that the methane concentration was the most sensitive component. Important parameters including yield of product on the substrate (f), yield of biomass on the substrate (Y), and half-saturation values (K) were estimated using genetic algorithms, which optimized the parameters with experimental results. The Monod maximum specific uptake rate (k) was, however, so strongly associated with the concentration of biomass, that values could not be estimated individually. Simulation with estimated parameters showed good agreement with experimental results in the case of methane production. However, there were some differences in acetate and propionate concentrations.  相似文献   

15.
Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.  相似文献   

16.
The use of photosynthetic microalgae for nutrient removal and biofuel production has been widely discussed. Anaerobic digestion of waste microalgal biomass to produce biogas is a promising technology for bioenergy production. However, the methane yield from this anaerobic process was limited because of the hard cell wall of Chlorella vulgaris. The use of ultrasound has proven to be successful at improving the disintegration and anaerobic biodegradability of Chlorella vulgaris. Ultrasonic pretreatment in the range of 5–200 J ml−1 was applied to waste microalgal biomass, which was then used for batch digestion. Ultrasound techniques were successful and showed higher soluble COD at higher applied energy. During batch digestion, cell disintegration due to ultrasound increased in terms of specific biogas production and the degradation rate. Compared to the untreated sample, the specific biogas production was increased in the ultrasound-treated sample by 90% at an energy dose of 200 J ml−1. For the disintegrated samples, volatile solids reduction was also increased according to the energy input and degradation. These results indicate that the hydrolysis of microalgal cells is the rate-limiting step in the anaerobic digestion of microalgal biomass.  相似文献   

17.
Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review.  相似文献   

18.
Anaerobic digestion of organic fraction of municipal solid waste was conducted in pilot-scale reactor based on high-solid combined anaerobic digestion process. This study was performed in two runs. In Run 1 and Run 2, pre-stage flushing and micro-aeration were conducted to determine their effect in terms of enhancing hydrolysis and acidification in ambient condition. In Run 2, after pre-stage, the methane phase (methanogenesis) was started-up after pH adjustment and inoculum addition in mesophilic condition. Acidified leachate produced in pre-stage was used for percolation during active methane phase. At the end of methane phase, air flushing was conducted before unloading the digesters. Hydrolysis and acidification yield of 140 g C/kg TS and 180 g VFA/kg TS were achieved, respectively in pre-stage. Micro-aeration exhibited an equivocal result in terms of enhancing hydrolysis/acidification; however it showed a positive effect in methane phase performance and this needed further investigation. Leachate percolation during methane phase showed an enhanced methanization when compared to the reactors without leachate percolation. After 60 days, 260 l CH(4)/kg VS was obtained. Based on the waste methane potential, 75% biogas conversion and 61% VS degradation were achieved.  相似文献   

19.
Microwave (MW) irradiation is a relatively new possibility of conditioning and pretreating for wastewater sludge. Following its application in the telecommunications and food-industries, the environmental use of this technique has come into the limelight in recent years, and has become increasingly popular. Various publications have dealt with the examination of the effects of MW irradiation in municipal sludge-handling processes. We focused on the effects of MW irradiation at different power levels on solubilization (sCOD/tCOD), biodegradation and anaerobic digestion of sludge from the food-industry. For evaluating the efficiency of MW pre-treatment, the changes in the soluble fraction of the organic matter, the VS/TS ratio, the biogas yield, the methane content in the biogas, and the rate of batch mesophilic digestion were used as control parameters. Additionally, the energetic efficiency of MW pre-treatment was also examined. The results were compared with those of conventional heat (CH) treatments of the same sludge. The MW treatment proved to increase both the sCOD/tCOD and the VS/TS ratio. Furthermore, the biogas and methane yields increased during the digestion of the MW-pretreated food-industry sludge. A higher MW power level generally enhanced the biogas and methane production. Energetically, the most economic pre-treatment of sludge from dairy and meat processing was at a power level of 1.5 Wg−1 and 2.5 Wg−1 MW respectively; the surplus energy content of the enhanced biogas product could not compensate the extra energy demand of the stronger MW pre-treatments.  相似文献   

20.
Anaerobic digestion is a consolidated bioprocess which can be further enhanced by incorporating an upstream pretreatment unit. The olive oil production produces a large amount of solid waste which needs to be properly managed and disposed. Three different pretreatment techniques were evaluated in regard to their impact on the anaerobic biodegradability: manual milling of olive pomace (OP), enzyme maceration, direct enzyme addition, and thermal hydrolysis of two-phase olive mill waste. The Gompertz equation was used to obtain parameters for comparison purposes. A substrate/inoculum ratio 0.5 was found to be the best to be used in anaerobic batch test with olive pomace as substrate. Mechanical pretreatment of OP by milling increases the methane production rate while keeping the maximum methane yield. The enzymatic pretreatment showed different results depending on the chosen pretreatment strategies. After the enzymatic maceration pretreatment, a methane production of 274 ml CH4 g VS added ?1 was achieved, which represents an improvement of 32 and 71 % compared to the blank and control, respectively. The direct enzyme addition pretreatment showed no improvement in both the rate and the maximum methane production. Steam explosion showed no improvement on the anaerobic degradability of two-phase olive mill waste; however, thermal hydrolysis with no rapid depressurization enhanced notoriously both the maximum rate (50 %) and methane yield (70 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号