首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enzymes of phospholipid synthesis in Clostridium butyricum   总被引:5,自引:0,他引:5  
We have examined extracts of Clostridium butyricum for several enzymes of phospholipid synthesis. Membrane particles were shown to catalyze the formation of CDP-diglyceride from [3H]CTP and phosphatidic acid. The reaction was dependent on Mg2+ and stimulated by monovalent cations. CDP-diglyceride formed in vitro was found to be a substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. The formation of phosphatidylglycerophosphate from added CDP-diglyceride and [U-14C]sn-glycerol-3-phosphate was dependent on Mg2+ and Triton X-100. The dephosphorylation of endogenously-generated phosphatidylglycerophosphate to yield phosphatidylglycerol was observed to be pH-dependent. The formation of phosphatidylserine from CDP-diglyceride and L-[3-14C]serine was stimulated by Mg2+ and Triton X-100. dCDP-diglyceride was a suitable substrate for both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase. Phosphatidylserine decarboxylase activity was barely detectable in membrane particles from C. butyricum. The addition of E. coli membrane particles provided efficient phosphatidylserine decarboxylase activity in this system. Although plasmalogens are the principal lipids of C. butyricum, none of the products of phospholipid synthesis formed in vitro contained measurable amounts of plasmalogens. The subcellular distribution of both phosphatidylglycerophosphate synthetase and phosphatidylserine synthetase in C. butyricum was also studied. Both were found to be membrane-associated.  相似文献   

2.
T J Larson  W Dowhan 《Biochemistry》1976,15(24):5212-5218
Cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDPdiglyceride):L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthetase) is bound tightly to the ribosomes in crude extracts of Escherichia coli. After separation of the enzyme from the ribosomes by the method of Raetz and Kennedy (Raetz, C.R.H., and Kennedy, E.P. (1974), J. Biol. Chem. 249, 5038), we have purified the enzyme to 97% of homogenekty. The major portion of the overall 5500-fold purification was attained by substrate-specific elution from phosphocellulose using CDP-diglyceride in the presence of detergent. The purified enzyme migrated as a single band with an apparent minimum molecular weight of 54 000 when subjected to electrophoresis on polyacrylamide disc gels containing sodium dodecyl sulfate. The purified enzyme catalyzed exchange reactions between cytidine 5'- monophosphate (CMP) and CDP-diglyceride and between serine and phosphatidylserine. The enzyme also catalyzed the hydrolysis of CDP-diglyceride to form CMP and phosphatidic acid. dCDP-diglyceride was equivalent to CDP-diglyceride in all reactions catalyzed by the enzyme. In addition, the purified enzyme catalyzed the formation of phosphatidylglycerol or phosphatidylglycerophosphate at a very slow rate when serine was replaced as substrate by glycerol or sn-glycero-3-phosphate, respectively. These results suggest catalysis occurs via a ping-pong mechanism through the formation of a phosphatidyl-enzyme intermediate.  相似文献   

3.
Cell-free extracts of Salmonella typhimurium, Serratia marcescens, Enterobacter aerogenes, and Micrococcus cerificans contained the following enzymatic activities related to phospholipid metabolism: cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diglyceride):l-serine O-phosphatidyltransferase (phosphatidylserine synthase), phosphatidylserine decarboxylase, CDP-diglyceride:sn-glycero-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase), phosphatidylglycerophosphate phosphatase, and CDP-diglyceride hydrolase. The intracellular distribution of these enzymatic activities as determined by sucrose density gradient centrifugation of cell-free extracts was shown to be similar in each species investigated. The phosphatidylserine decarboxylase, phosphatidylglycerophosphate synthase, and CDP-diglyceride hydrolase activities were all associated with the cell envelope fraction, whereas the phosphatidylserine synthase activity was associated mainly with the ribosomal fraction. These enzymatic activities are comparable and have an intracellular distribution similar to those found in Escherichia coli cell-free extracts. Therefore, the pathways established for phospholipid biosynthesis in E. coli can also account for the synthesis of the major phospholipids (phosphatidylethanolamine and phosphatidylglycerol) in several other gram-negative organisms. In addition, the unusual ribosomal association of the phosphatidylserine synthase from E. coli (Raetz and Kennedy, J. Biol. Chem. 247:2008-2014, 1972) appears to be a general property for this activity in several other bacterial species.  相似文献   

4.
The phospholipid biosynthetic enzyme activities: CDP-diglyceride synthetase, phosphatidylglycerophosphate synthetase, PGP phosphatase, phosphatidylserine (PS) synthase, PS decarboxylase, and S-adenosyl-L-methionine:phosphatidylethanolamine (AdoMet:PE) N-methyltransferase were detected in crude cell-free extracts of Rhodopseudomonas sphaeroides. CDP-diglyceride synthetase and phosphatidylglycerophosphate synthetase co-enriched with penicillin-binding protein activity, a known cytoplasmic membrane marker, throughout fractionation of cell-free extracts of both chemoheterotrophically and photoheterotrophically grown cells. PS decarboxylase also co-enriched with the cytoplasmic membranes in fractions derived from chemoheterotrophically and photoheterotrophically grown cells, but substantially greater quantities of PS decarboxylase activity was found in the chromatophores derived from photoheterotrophically grown cells than could be accounted for by cytoplasmic membrane contamination of this sample. PS synthase (60% of the recovered activity) and S-adenosyl-L-methionine:phosphatidylethanolamine N-methyltransferase (90% of the recovered activity) were found in the supernatant fraction after high speed centrifugation of crude cell lysates, suggesting that these enzyme activities were not tightly membrane associated. The localization of phospholipid biosynthetic enzyme activity in R. sphaeroides is discussed in terms of the biosynthesis of the photosynthetic membranes.  相似文献   

5.
CDP-diglyceride, an important metabolic intermediate in the biosynthesis of phospholipids, has been isolated for the first time from a mammalian tissue. The isolated material, labeled in incubations of intact rat pineal glands with 32P, [3H]cytidine, or [3H]CTP in the presence of DL-propranolol, was chromatographically identical with authentic CDP-diglyceride and was able to serve as phosphatidyl donor in the enzymatic synthesis of phosphatidylinositol and phosphatidyglycerol. It yielded the expected products upon enzymatic and chemical degradation. No dCDP-diglyceride was detected No radioactive CDP-diglyceride was detected following incubations in the absence of propranolol. Stimulation of CDP-diglyceride labeling from 32P1 occurred at propranolol concentrations between 0.03 and 1.0 mM. Net synthesis of the liponucleotide was shown. At 0.1 mM, propranolol incrased the incorporation of radioactivity into phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid. When inositol (10 mM) and propranolol (0.1 mM) were both present, phosphatidylinositol labeling was further increased, wheas stimulation of phosphatidylglycerol and CPD-diglyceride labeling was abolished. Since CDP-diglyceride did not accumulate in the absence of the drug, its availability may normally be the limiting factor in phosphatidylinositol and phosphatidylglycerol biosynthesis. When propranol is present, inositol may become limiting and thus may lead to the observed labeling pattern.  相似文献   

6.
The cytosine liponucleotides CDP-diglyceride and dCDP-diglyceride are key intermediates in phospholipid biosynthesis in Escherichia coli (C. R. H. Raetz and E. P. Kennedy, J. Biol. Chem. 248:1098--1105, 1973). The enzyme responsible for their synthesis, CTP:phosphatidic acid cytidylytransferase, was solubilized from the cell envelope by a differential extraction procedure involving the detergent digitonin and was purified about 70-fold (relative to cell-free extracts) in the presence of detergent. In studies of the heat stability of the enzyme, activity decayed slowly at 63 degrees C. Initial velocity kinetic experiments suggested a sequential, rather than ping-pong, reaction mechanism; isotopic exchange reaction studies supported this conclusion and indicated that inorganic pyrophosphate is released before CDP-diglyceride in the reaction sequence. The enzyme utilized both CTP and dCTP as nucleotide substrate for the synthesis of CDP-diglyceride and dCDP-diglyceride, respectively. No distinction was observed between CTP and dCTP utilization in any of the purification, heat stability, and reaction mechanism studies. In addition, CTP and dCTP were competitive substrates for the partially purified enzyme. It therefore appears that a single enzyme catalyzes synthesis of both CDP-diglyceride and dCDP-diglyceride in E. coli. The enzyme also catalyzes a pyrophosphorolysis of CDP-diglyceride, i.e., the reverse of its physiologically important catalysis.  相似文献   

7.
Cytidine 5'-diphosphate (CDP)-diglyceride is hydrolyzed to phosphatidic acid and cytidine 5'-monophosphate by a specific membrane-bound enzyme in cell-free extracts of Escherichia coli. The hydrolase can be extracted from the particulate fraction with Triton X-100 and purified 1,000-fold in the presence of this detergent. Several nucleoside disphosphate diglycerides were synthesized to determine the substrate specificity of the hydrolase. CDP-diglyceride was hydrolyzed preferentially, although uridine 5'-diphosphate-diglyceride, guanosine 5'-diphosphate-diglyceride, and adenosine 5'-diphosphate (ADP)-diglyceride were also slowly hydrolyzed. Surprisingly, the purified enzyme did not catalyze detectable cleavage of deoxy-CDP (dCDP)-diglyceride. The liponucleotide pool of E. coli contains dCDP-diglyceride and CDP-diglyceride in approximately equal amounts (Raetz and Kennedy, 1973). Water-soluble nucleoside pyrophosphates, such as CDP-choline, nicotinamide adenine dinucleotide, or adenosine 5'-triphosphate are not attacked by this specific hydrolase. Hydrolysis of CDP-diglyceride is strongly inhibited by adenosine 5'-monophosphate and by ADP-diglyceride.  相似文献   

8.
Intact mitochondria from the endosperm of castor bean were isolated on linear sucrose gradients. These mitochondria were ruptured and the membranes separated on discontinuous sucrose gradients into outer membrane, intact inner membrane, and ruptured inner membrane fractions. Each membrane fraction was examined for its capacity to synthesize phosphatidylglycerol, CDP-diglyceride, phosphatidylcholine via methylation, and phosphatidic acid. The syntheses of phosphatidylglycerol, CDP-diglyceride, and phosphatidylcholine were localized exclusively in the inner mitochondrial membrane fractions while phosphatidic acid synthesis occurred in both the inner and outer mitochondrial membranes.  相似文献   

9.
The phosphatidylglycerophosphatase (EC 3.1.3.27) activity of rat liver mitochondria was investigated by assaying the conversion of 14C-labelled phosphatidylglycerophosphate to phosphatidylglycerol. The activity was associated with a mitochondrial membrane fraction and could not be released into solution employing techniques applicable to a peripheral membrane protein. The enzyme was partially purified by sonication, pH 5.0 precipitation, and gel filtration. Various ionic and nonionic detergents as well as numerous divalent cations inhibited the phosphatase. The enzyme displayed a high affinity for phosphatidylglycerophosphate.  相似文献   

10.
The synthesis of cardiolipin from phosphatidylglycerol catalyzed by isolated envelopes of Escherichia coli occurs without the utilization of endogenous CDP-diglyceride as a substrate. The synthesis of cardiolipin has been assayed distinct from the synthesis of bis-phosphatidic acid. Envelope fractions isolated from cultures exposed to treatments which increase the relative rate of cardiolipin synthesis in vivo were found not to have increased amounts of cardiolipin synthetase activity in vitro. We suggest that the relative increase of cardiolipin synthesis observed during these treatments stems from the lack of an energy requirement for the cardiolipin synthetase reaction and the presence of large amounts of cellular phosphatidylglycerol.  相似文献   

11.
Isolated nuclei from HeLa cells synthesize dCDP-diglyceride from dCTP at the rapid rate of 5–10 nmol/20 min/108 nuclei. The incorporation of dCTP into this phospholipid precursor is thus 10 to 20 times faster than the incorporation of dCTP into DNA, in vitro, under the same conditions. ATP, phosphatidic acid, and MgCl2 are required for optimal synthesis of dCDP-diglyceride. The reaction is completely inhibited by the presence of 0.04% Triton N-101. Liponucleotide formation occurs equally well with dCTP or CTP in this system and competition studies suggest that a single enzyme catalyzes the formation of dCDP- and CDP-diglyceride.  相似文献   

12.
Escherichia coli mutants partially defective in CTP: phosphatidic acid cytidylyltransferase (CDP-diglyceride synthetase) are more resistant to the antibiotic erythromycin than are isogenic wild type strains. When 100 micrograms/ml erythromycin is added to nutrient agar plates, it is possible to obtain a 30-fold enrichment for cds mutants from a mutagen-treated stock, as judged by colony autoradiography (Ganong, B. R., Leonard, J. M., and Raetz, C. R. H. (1980) J. Biol. Chem. 255, 1623-1629). Using this approach, we have isolated 38 new cds mutants, nine of which are unable to grow at a culture pH greater than 8. A typical conditionally lethal mutant like GN80 contains a 3 to 5% phosphatidic acid below pH 7. Above pH 8, GN80 accumulates phosphatidic acid to about 30% of the total membrane lipid, while the de novo syntheses of phosphatidylethanolamine and phosphatidylglycerol are abruptly inhibited by over 10-fold. GN80 loses viability after 60 min at pH 8.5, and the liponucleotide pool of GN80 is about one-seventh that of an isogenic wild type, GN85, under these conditions. The pH optimum of the residual CDP-diglyceride synthetase present in extracts of GN80 is 0.5 pH units lower than normal. Twenty-one of 26 spontaneous pH-resistant revertants of GN80 concomitantly regain parental levels of the enzyme. Our results constitute definitive physiological proof that CDP-diglyceride is an obligatory precursor for over 90% of the phosphatidylethanolamine and phosphatidylglycerol in E. coli. Independent evidence for this is provided by the observation that cytidine auxotrophs, which are defective in the conversion of UTP to CTP, also accumulate very high levels of phosphatidic acid after 1 h of cytidine starvation.  相似文献   

13.
Summary Enzymes of the CDP-diglyceride pathway of phospholipid synthesis, CDP-diacylglycerol synthetase, CDP-diacylglycerol: glycerol 3-phosphate phosphatidyl-transferase and enzymes of phosphatidylserine formation were initially of relatively high specific activities in aleurone cells of wheat and declined upon imbibition. Enzyme activity of phosphatidylinositol synthesis was not detected in dry grains but was present upon imbibition. CDP-diacylglycerol: glycerol 3-phosphate phosphatidyltransferase shifted during imbibition from 85% of the activity in the supernatant of aleurone layers from dry seeds to 98% associated with large particle fractions after 36 hours of imbibition. Phosphatidylserine formation shifted from a dominant location in the 1,500 x g fraction in the dry seed to a predominantly mitochondrial location after 36 hours of imbibition. The subcellular distribution of CDP-diacylglycerol synthetase did not change appreciably upon imbibition from that of the dry seed, 75 to 80% of the activity was found in the supernatant. Only CDP-diacylglycerol: glycerol 3-phosphate phosphatidyltransferase showed increased specific activity late in the imbibition period. GA3 accelerated the decrease of already declining activities of the CDP-diglyceride enzymes and the changes in their patterns of distribution, augmented the activities of the phosphatidylinositol synthesizing enzyme, and both accelerated and augmented the increase in the activity of the enzyme of phosphatidylglycerol synthesis which occurred late in imbibition.Committee on Institutional Cooperation Travelling Scholar from the University of Chicago.  相似文献   

14.
A versatile synthesis of spin-labelled radioactive cytidine diphospho-sn-1,2-diacylglycerol (CDP-diglyceride) has been developed based on the combination of the enzymatic acylation of radioactive sn-glycero-3-phosphate with 12-doxyl stearic acid and the chemical conversion of the thus obtained spin-labelled radioactive phosphatidic acid with cytidine monophosphomorpholi-date into spin-labelled radioactive CDP-diglyceride. The method for the isolation and purification of the latter compound was described. This obtained CDP-[2-3H]diglyceride contained 10% of fatty acids of paramagnetic nature, presumably present as a covalently bound 12-doxyl stearic acid esters. The biological activity was tested by using the synthesized compound as a substrate in the mitochondrial biosynthesis of phosphatidylglycerol. It was found that spin-labelled CDP-[2-3H]diglyceride prepared as described can be converted in the presence of sn-[2-14C]-glycero-3-phosphate into a spin-labelled [2-3H, 2'-14C]phosphatidylglycerol with isolated rat liver mitochondria, establishing therefore that the site of its utilization is identical with the site of phosphatidylglycerol synthesis in isolated mitochondria, i.e. inner mitochondrial membrane. Results described demonstrate that the synthesized spin-labelled CDP-diglyceride can be used as a specific probe for the spin- and radioactive covalent labelling of polyglycerophosphatides of mitochondrial membranes. Some implications and further possibilities in the study of biological membranes using the spin-labelled radioactive CDP-diglyceride are discussed.  相似文献   

15.
Interaction of CDP-diglyceride with Escherichiacoli B membrane was studied by ESR spectroscopy. The results showed that the micelles of CDP-diglyceride molecules associate with membrane surface in the presence of Mg2+, whereas, when Mg2+ was omitted from the system, CDP-diglyceride molecules diffuse rapidly into membrane bilayer. The latter condition was shown to be more preferable for phosphatidylglycerol biosynthesis.  相似文献   

16.
Lamellar inclusion bodies, apparent precursors for alveolar surfactant lining, have remarkably similar phospholipid composition to surfactant from alveolar lavage, but distinctly different from other fractions studied: mitochondria, microsomal fraction containing endoplasmic reticulum membranes, plasma membranes and nuclei. Surfactant contained (as % of total phospholipid phosphate): 75.5-77.0% lecithin, 11.0-11.2% phosphatidylglycerol, 4.2-4.6% phosphatidylethanolamine, 3.0-3.2% phosphatidylinositol, 1.5-1.7% bis-(monoacylglycerol) phosphate, 1.2-1.9% phosphatidylserine, and 0.7-1.5% sphingomyelin. Fatty acids of phosphatidylglycerol from lamellar bodies were similar to those from microsomes but different from those in mitochondria. Lung homogenate in continuous sucrose density gradient displayed two major activity peaks of phosphatidylglycerol synthesis: the heavier from mitochondria; the lighter from endoplasmic reticulum. Studies on mechanism of phosphatidylglycerol synthesis in vitro revealed (in these two fractions) CDP-diglyceride and sn-glycerol phosphate precursors to phosphatidylglycerol phosphate, that hydrolysed to phosphatidylglycerol. In microsomes disaturated CDP-diglycerides were 1.6-1.9 times more active substrates than in mitochondria, whereas CDP-diglycerides from egg lecithin were almost equally active. In contrast to lung mitochondria no cardiolipin synthesis was detected in microsomes. The highest specific activities for phosphatidate cytidyltransferase, CDP-diglyceride-inositol phosphatidyltransferase, choline phosphotransferase, and phosphatidylethanolamine methyltransferase were all found in microsomes. The present in vitro studies and additional evidence (M. Hallman and L. Gluck, (1975) Fed. Proc. 34, 274) support the hypothesis that de novo synthesis of surfactant lecithin phosphatidylinositol and phosphatidylglycerol takes place in the endoplasmic reticulum of alveolar cells.  相似文献   

17.
Participation of microsomal CDP-diglycerides in mitochondrial biosynthesis of phosphatidylglycerol was studied by [3H]palmitoyl, [14C]linoleoyl, and [14C]arachidonoyl CDP-diglycerides and [3H]CDP-diglycerides which were bound to microsomal membranes, incubated with unlabelled mitochondrial membranes, and further incubated in the presence of radioactive sn-glycero-3-phosphate under conditions required for mitochondrial phosphatidylglycerol biosynthesis. Ten to 15% of microsomal radioactive CDP-diglycerides was transferred to mitochondrial membranes and incorporated into mitochondrial radioactive lipids identified as phosphatidylglycerol, phosphatidylglycerophosphate, and, when [14C]linoleoyl CDP-diglycerides were used, diphosphatidylglycerol (cardiolipin).  相似文献   

18.
Cytidinediphospho-sn-1,2-diaclglycerol (CDP-diglyceride) has been covalently linked to Sephrose 4B via adipic acid dihydrazide spacer arm forming an effective affinity chromatography column. This liponucleo-tide ligand and sn-glycero-3-phosphate are subtracts for the formation of 3-sn-phoshatidyl-1'-sn-glycero-3'-phosphate (PGP) catalyzed in both eukaryotic and prokaryotic organisms by sn-glycero-3-phosphate: CMP phosphatidlytranferase (PGP synthetase). Using this CDP-diglyceride Sephrose affinity column we were able to resolve the membrane associated 3-sn-phosphatidyl'1-sn-glycerol (PG) synthesizing system present in Bacillus licheniformis into two activities. A PGP synthetase activity was adsorbed to the affinity column and was eluted using buffer containg CDP-diglyceride; a PGP phosphatease acactivity had no affinity for the column. Both PGP synthase and PGP phosphatase of B. licheniformis were associated with a membrane component of the cell as evidenced by sucrose gradient centrifugation, differential centrifugation, and solubilization by buffers containing detergent...  相似文献   

19.
In Escherichia coli, highly effective regulation controls the balanced synthesis of membrane phospholipids, important for optimal growth. Regulation is such that normally about 70% of a common pool of cytosine liponucleotide precursor is utilized by phosphatidylserine synthase and eventually converted to phosphatidylethanolamine, while about 30% is utilized by the competing enzyme phosphatidylglycerophosphate synthase and converted to phosphatidylglycerol (25%) plus cardiolipin (5%). Although the ratio of phosphatidylglycerol to cardiolipin may vary with conditions of growth, the sum of these two lipids remains relatively constant at about 30% of the total. Alternative models, postulating coordinate regulation of the two competing enzymes, or independent feedback regulation are proposed. These models were tested in experiments in which phosphatidylglycerol was continuously removed from growing cells treated with arbutin (4-hydroxyphenyl-O-beta-D-glucoside), causing its conversion to arbutinphosphoglycerol (Bohin, J.-P., and Kennedy, E.P. (1984) J. Biol. Chem. 259, 8388-8393.) The synthesis of phosphatidylglycerol was increased by a factor of 7 in cells treated with arbutin, with only small changes in phospholipid composition and with no significant change in the level of phosphatidylglycerophosphate synthase. The synthesis of phosphatidylethanolamine was not significantly increased, decisively eliminating the model that requires coordinate regulation of phosphatidylserine synthase and phosphatidylglycerophosphate synthase, and supporting the model of independent feedback inhibition, sensitive to very small changes in composition of cellular phospholipids.  相似文献   

20.
A conditionally lethal mutant of Escherichia coli lacking phosphatidylglycerol in vivo at 42 degrees C has been previously isolated by two-stage mutagenesis (M. Nishijima and C. R. H. Raetz, J. Biol. Chem. 254:7837-7844, 1979). In the first step (designated pgsA444) the phosphatidylglycerophosphate synthetase is partially inactivated, but the resulting strain continues to make about two-thirds of the normal level of phosphatidylglycerol and is not temperature sensitive. The second lesion, termed pgsB1, causes temperature-sensitive growth and phosphatidylglycerol synthesis in strains harboring pgsA444. The pgsA locus appears to be the structural gene for the synthetase and maps near min 42. In the present study we mapped the pgsB1 mutation and characterized its interaction with pgsA444 by genetic and biochemical methods. Unexpectedly, pgsB1 was not a second lesion in the pgsA structural gene, but rather mapped at a distinct site near minute 4. P1 vir-mediated contransduction suggested the gene order pantonA-dapD-pgsB-dnaE (clockwise). Independent evidence for the genetic mapping was provided by the identification of two hybrid ColE1 plasmids (pLC26-43 and pLC34-20. L. Clarke and J. Carbon, Cell 9:91-99, 1976) which both carry pgsB+ and dnaE+. Introduction of either the pgsA+ or the pgsB+ gene (via episomes, hybrid plasmids or P1 vir transduction) suppressed the temperature sensitivity of the double mutant (pgsA444 pgsB1) and restored normal levels of phosphatidylglycerol at 42 degrees C. In addition, strains with the pgsA+ pgsB1 genotype produced a novel lipid (X) at all temperatures, whereas the double mutant (pgsA444 pgsB1) contained two unusual lipids (X and Y) after 3 h at 42 degrees C. Both X and Y are precursors of lipopolysaccharide, and introduction of pgsB+ into the double mutant caused the disappearance of X and Y. Although the biochemical basis of the pgsB1 lesion is unknown, its existence suggests a previously unrecognized link between lipopolysaccharide and phosphatidylglycerol syntheses in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号