共查询到20条相似文献,搜索用时 15 毫秒
1.
Grzesik WJ Frazier CR Shapiro JR Sponseller PD Robey PG Fedarko NS 《The Journal of biological chemistry》2002,277(46):43638-43647
Proteoglycans (PGs) are a family of molecules that undergo extensive post-translational modifications that include addition of glycosaminoglycan (GAG) chains as well as N- and O-linked oligosaccharides to the protein core. PG composition and structure have been reported to alter with age. To test whether the post-translational modifications to PGs can serve as in vitro surrogate end point markers for chronological age, the extent of GAG modifications was determined for PGs derived from normal human bone cells of 14 donors (age range, fetal to 60 years). Isolated cells were steady state radiolabeled with (35)SO(4)(2-) and [(3)H]GlcN. For biglycan and decorin, iduronate content was linearly correlated with age (increased 1.5x between fetal and age 60 years). For the syndecan-like heparan sulfate PG, the N-sulfation of post-natal cells increased over 3.5-fold until reaching a plateau during the 4th decade of life. The amount of O-linked oligosaccharides was also found to decrease as a function of increasing normal donor age, whereas the specific activity of the metabolic precursor pool remained constant regardless of donor age. These age-related changes in post-translational modifications were then used to demonstrate that osteoblasts derived from patients with osteogenesis imperfecta did not exhibit facets of a pre-mature aging, but rather were arrested in a fetal-like phenotypic state. A growth matrix rich in thrombospondin altered PG metabolism in osteoblastic cells, resulting in the production and secretion of the fetal-like (rich in O-linked oligosaccharides) forms of decorin and biglycan. This effect was qualitatively different from the effect of transforming growth factor-beta, which predominantly altered GAGs rather than O-linked oligosaccharides. No other Arg-Gly-Asp protein (fibronectin, vitronectin, type I collagen, osteopontin, and bone sialoprotein) showed any detectable effect on PG metabolism in bone cells. These results indicate that a proper matrix stoichiometry is critical for metabolism of PGs. 相似文献
2.
Temporal regulation of hyaluronan and proteoglycan metabolism by human bone cells in vitro 总被引:3,自引:0,他引:3
N S Fedarko J D Termine M F Young P G Robey 《The Journal of biological chemistry》1990,265(21):12200-12209
Osteoblasts elaborate a dynamic extracellular matrix that is constructed and mineralized as bone is formed. This matrix is primarily composed of collagen, along with noncollagenous proteins which include glycoproteins and proteoglycans. After various times in culture, human bone cells were labeled with [35S]sulfate, [3H] leucine/proline, or [3H]glucosamine and the metabolism of hyaluronan and four distinct species of proteoglycans (PGs) was assayed in the medium, cell layer, and intracellular pools. These cells produce hyaluronan (Mr approximately 1,400,000; a chondroitin sulfate PG (CSPG), Mr approximately 600,000; a heparan sulfate PG (HSPG), Mr approximately 400,000; and two dermatan sulfate PGs with Mr approximately 270,000 (biglycan, PG I) and Mr approximately 135,000 (decorin, PG II) that distribute between the medium and cell layer. Two days following subculture, 12 h [35S]sulfate steady-state labeling yielded a composition of 24, 27, 31, and 18% for total CSPG, HSPG, biglycan, and decorin, respectively. While HSPG and decorin levels and distribution between medium and cell layer remained relatively constant during steady-state labeling at different times in culture, CSPG and biglycan levels increased dramatically at late stages of growth, and their distribution changed throughout culture. These results were independent of cell density, media depletion, and labeling pool effects. In contrast, hyaluronan synthesis was uncoupled from PG synthesis and apparently density-dependent. Pulse chase labeling at different stages of culture showed that the CSPG and decorin behaved as secretory PGs. Both HSPG and biglycan underwent catabolism, with HSPG possessing a t1/2 of 8 h and biglycan a t1/2 of 4 h. While the rate of HSPG turnover did not appreciably change between early and late culture, that of biglycan decreased. The mRNA for decorin was constant, while that of biglycan changed during culture. These results suggest that each PG possesses a distinct pattern of cellular and temporal distribution that may reflect specific stages in matrix formation and maturation. 相似文献
3.
4.
Mamoru Morimoto Masako Utsumi Yoshiyuki Tohno Setsuko Tohno Yumi Moriwake Kazuya Sugimoto Motohisa Yamada Kazuhiko Furuta Yasuo Takano Yoshinori Takakura 《Biological trace element research》2001,82(1-3):53-60
To examine whether the bone mineral density (BMD) decreases uniformly with aging in any spongy bones, the authors investigated
age-related changes of BMD in the calcaneus, talus, and scaphoid bone. After the ordinary dissection by medical students was
finished, calcanei, tali, and scaphoid bones were resected from the subjects, and BMDs were measured by dual-energy X-ray
absorptiometry. Their BMDs seemed to decrease gradually with aging in the calcanei, tali, and scaphoid bones. It was found
that there were statistically significant relationships between age and BMD in the men’s and women’s scaphoid bones, women’s
tali, and women’s calcanei, but not in the men’s tali and calcanei. It should be noted that there were significant relationships
between age and BMD in both men’s and women’s scaphoid bones. In regard to relationship in BMD between the bones of the upper
and lower limbs in individuals, it was found that the relationship between the calcaneus and talus was higher than that between
the calcaneus and scaphoid bone. This suggests that there is a higher relationship in BMD between the two tarsal bones compared
with that between the tarsal and carpal bones. 相似文献
5.
6.
7.
8.
Age-related changes in the structure of proteoglycan link proteins present in normal human articular cartilage. 总被引:7,自引:8,他引:7
下载免费PDF全文

Reduced-minus-oxidized difference spectra were recorded on particle preparations of the cyanobacterium Anacystis nidulans. Physiological oxidation of anaerobic membranes was effected either by O2 or by light. In both cases the spectral changes observed in the 550-570nm region were essentially the same. The results were confirmed by dual-wavelength spectrophotometry. It is concluded that a membrane-bound cytochrome f-b complex participates in both respiratory and photosynthetic elevtron transport. 相似文献
9.
10.
Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges 总被引:41,自引:0,他引:41
Studies with human and animal culture systems indicate that a sub-population of bone marrow stromal cells has the potential to differentiate into osteoblasts. There are conflicting reports on the effects of age on human marrow-derived osteogenic cells. In this study, we used a three dimensional (3D) culture system and quantitative RT-PCR methods to test the hypothesis that the osteogenic potential of human bone marrow stromal cells decreases with age. Marrow was obtained from 39 men aged 37 to 86 years, during the course of total hip arthroplasty. Low-density mononuclear cells were seeded onto 3D collagen sponges and cultured for 3 weeks. Histological sections of sponges were stained for alkaline phosphatase activity and were scored as positive or negative. In the group < or = 50 years, 7 of 11 samples (63%) were positive, whereas only 5 of 19 (26%) of the samples in the group > or = 60 years were positive (p = 0.0504). As revealed by RT-PCR, there was no expression of alkaline phosphatase or collagen type I mRNA before culture, however there were strong signals after 3 weeks, an indication of osteoblast differentiation in vitro. We performed a quantitative, competitive RT-PCR assay with 8 samples (age range 38-80) and showed that the group < or = 50 years had 3-fold more mRNA for alkaline phosphatase than the group > or = 60 years (p = 0.021). There was a significant decrease with age (r = - 0.78, p = 0.028). These molecular and histoenzymatic data indicate that the osteogenic potential of human bone marrow cells decreases with age. 相似文献
11.
The synthesis of collagen and proteoglycans by cultured chondrocytes, as measured by the incorporation of L-[3H]proline into hydroxyproline and [3H]acetate into glycosaminoglycans, was shown to be depressed by 58% and 39%, respectively, by the addition of exogenous proteoglycan at a concentration of 10 mg/ml growth media. The incorporation of L-[3H]proline into acid-insoluble protein remained unaltered in the presence of the proteoglycan. It was concluded that the effect was depressing the activity on the enzymatic steps, associated with the endoplasmic reticulum, which are responsible for the post-translational modification of collagen and proteoglycan. 相似文献
12.
C.J. Handley P.R. Brooks D.A. Lowther 《Biochimica et Biophysica Acta (BBA)/General Subjects》1978,544(2):441-444
The synthesis of collagen and proteoglycans by cultured chondrocytes, as measured by the incorporation of L-[3H]proline into hydroxyproline and [3H]acetate into glycosaminoglycans, was shown to be depressed by 59% and 39%, respectively, by the addition of exogenous proteoglycan at a concetration of 10 mg/ml growth media. The incorporation of L-[3H]proline into acid-in-soluble protein remained unaltered in the presence of the proteoglycan. It was concluded that the effect was depressing the activity of the enzymatic steps, associated with the endoplasmic reticulum, which are responsible for the post-traslational modification of collagen and proteoglycan. 相似文献
13.
V. V. Petrov O. V. Vasilyeva N. K. Kornilova A. G. Gunin 《Russian Journal of Developmental Biology》2013,44(3):139-143
In this study, quantitative analysis of inflammatory effectors—mast cells and eosinophils—in derma of people of different ages is performed. The study shows that mast cell quantity in derma increases with age. Eosinophils are rarely observed in human dermis. There are no age-correlated changes of dermal eosinophils quantity observed. Age-correlated dermal fibroblast quantity is established. PCNA+ (proliferating cells nuclear antigen) fibroblast percentage demonstrating their proliferative pool also reliably decreases with age. Results of correlation analysis show that age-correlated increase in mast cells’ quantity is reliably (p < 0.05) correlated with decrease in total number and percentage of PCNA+ fibroblasts in derma. Consequently, age-correlated increase in dermal mast cell may be proposed to be one of the inflammatory and aging mechanisms. Mast cells, whose number increases with aging, may influence dermal fibroblast number with aging. 相似文献
14.
Bone marrow fibroblasts from normal and leukemic patients were used to investigate the relationship between serial subcultivation and changes in collagen synthesis. A regime was established to generate subcultures up to 35 cumulative population doublings (CPDs) in normal cells and to 9 CPDs in leukemic cells. In both types of cells, collagen synthesis decreased as subcultivation progressed. In normal cells, collagen synthesis was reduced to 10% of the original levels at 18 CPDs and in leukemic cells at 8 CPDs. In normal fibroblasts, collagen synthesis was more profoundly affected than overall protein synthesis by subcultivation. In acute lymphoblastic leukemia-derived fibroblasts, the decrease in collagen synthesis paralleled that of total protein. 相似文献
15.
Kuranda K Vargaftig J de la Rochere P Dosquet C Charron D Bardin F Tonnelle C Bonnet D Goodhardt M 《Aging cell》2011,10(3):542-546
Adult stem cells are critical for maintaining cellular homeostasis throughout life, yet the effects of age on their regenerative capacity are poorly understood. All lymphoid and myeloid blood cell lineages are continuously generated from hematopoietic stem cells present in human bone marrow. With age, significant changes in the function and composition of mature blood cells are observed. In this study, we report that age-related changes also occur in the human hematopoietic stem cell compartment. We find that the proportion of multipotent CD34(+) CD38(-) cells increases in the bone marrow of elderly (>70 years) individuals. CD34(+) CD38(+) CD90(-) CD45RA(+/-) CD10(-) and CD34(+) CD33(+) myeloid progenitors persist at the same level in the bone marrow, while the frequency of early CD34(+) CD38(+) CD90(-) CD45RA(+) CD10(+) and committed CD34(+) CD19(+) B-lymphoid progenitors decreases with age. In contrast to mice models of aging, transplantation experiments with immunodeficient NOD/SCID/IL-2Rγ null (NSG) mice showed that the frequency of NSG repopulating cells does not change significantly with age, and there is a decrease in myeloid lineage reconstitution. An age-related decrease in the capacity of CD34(+) cells to generate myeloid cells was also seen in colony-forming assays in vitro. Thus, with increasing age, human hematopoietic stem/progenitor cells undergo quantitative changes as well as functional modifications. 相似文献
16.
The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. 相似文献
17.
Thiébot Bénédicte Langris Monique Bonnamy Pierre-Jacques Bocquet Jean 《Molecular and cellular biochemistry》1998,187(1-2):99-112
The effects of an increase in intracellular cAMP concentration on proteoglycan (PG) synthesis by peritubular (PT) cells from immature rat testis were investigated. In the presence of dBcAMP for 72 h, the [3H]-hexosamine incorporation in secreted PG and in cellassociated PG was reduced, whereas [35S]-sulfate radioactivity was enhanced in secreted PG and not affected in cell-associated PG. Cholera toxin and IBMX, known to generate high intracellular cAMP levels, induced similar changes. Cyclic AMP did not alter PG protein moiety synthesis but enhanced PG turnover. Cholera toxin and dBcAMP profoundly modified PG characteristics: (1) Apparent molecular weight of PG was increased. (2) This was due to an increase in glycosaminoglycans (heparan sulfate (HS) and chondroitin sulfate (CS)) length. (3) The number of glycosaminoglycan chains was presumably reduced. (4) Heparan sulfate and chondroitin sulfate chains of medium and cell layer-associated PG appeared oversulfated. (5) The pattern of cell layer associated PG was modified with a decrease in HSPG and a correlative increase in CSPG. Cholera toxin and dBcAMP also dramatically stimulated hyaluronan synthesis by possible phosphorylation induced activation of hyaluronan synthase(s). 相似文献
18.
Marguerite M. Plesko Arlan Richardson 《Biochemical and biophysical research communications》1984,118(3):730-735
Ultraviolet-induced unscheduled DNA synthesis was studied as a function of age in hepatocytes isolated from 6- to 32-months-old rats. Unscheduled DNA synthesis was measured by both DNA specific activity and autoradiography. Using both procedures, a significant decline in unscheduled DNA synthesis was observed after 14 months of age. 相似文献
19.
20.
Inhibition of hyaluronan uptake in lymphatic tissue by chondroitin sulphate proteoglycan. 总被引:1,自引:0,他引:1
下载免费PDF全文

Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. This result confirms that monochlorodimedon inhibits myeloperoxidase, and that the monochlorodimedon assay grossly underestimates the activity of myeloperoxidase. With 10 microM-H2O2 and 100 mM-Cl-, myeloperoxidase had a neutral pH optimum. Increasing the H2O2 concentration to 100 microM lowered the pH optimum to pH 6.5. Above the pH optimum there was a burst of H2O2 uptake that rapidly declined due to accumulation of Compound II. High concentrations of H2O2 inhibited myeloperoxidase and promoted the formation of Compound II. These effects of H2O2 were decreased at higher concentrations of Cl-. We propose that H2O2 competes with Cl- for Compound I and reduces it to Compound II, thereby inhibiting myeloperoxidase. Above pH 6.5, O2.- generated by xanthine oxidase and acetaldehyde prevented H2O2 from inhibiting myeloperoxidase, increasing the initial rate of H2O2 uptake. O2.- allowed myeloperoxidase to function optimally with 100 microM-H2O2 at pH 7.0. This occurred because, as previously demonstrated, O2.- prevents Compound II from accumulating by reducing it to ferric myeloperoxidase. In contrast, at pH 6.0, where Compound II did not accumulate, O2.- retarded the uptake of H2O2. We propose that by generating O2.- neutrophils prevent H2O2 and other one-electron donors from inhibiting myeloperoxidase, and ensure that this enzyme functions optimally at neutral pH. 相似文献