首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coverage and the design of striate cortex   总被引:2,自引:0,他引:2  
Hubel and Wiesel (1977) suggested that ocular dominance and orientation columns in the macaque monkey striate cortex might be bands of uniform width that intersected orthogonally. They pointed out that if this were the case, there would be an equal allocation of cells of different orientation preference to each eye and to each point in visual space. However, orientation and ocular dominance columns have a more complex structural organization than is implied by this model: for example, iso-orientation domains do not intersect ocular dominance stripes at right angles and the two columnar systems have different periodicities. This raises the question as to how well the striate cortex manages to allocate equal numbers of neurons of different orientation preference to each eye and to each region of visual space, a factor referred to here as coverage. This paper defines a measure of uniformity of coverage, c, and investigates its dependence on several different parameters of columnar organisation. Calculations were done first using a simplified one-dimensional model of orientation and ocular dominance columns and were then repeated using more realistic two-dimensional models, generated with the algorithms described in the preceding paper (Swindale 1991). Factors investigated include the relative periodicities of the two columnar systems, the size of the cortical point image, the width of orientation tuning curves, whether columns are spatially anisotropic or not, and the role of the structural relationships between columns described by Blasdel and Salama (1986). The results demonstrate that coverage is most uniform when orientation hypercolumns are about half the size of ocular dominance hypercolumns. Coverage is most uneven when the hypercolumns are the same size, unless they are related in the way described by Blasdel and Salama, in which case coverage gets only slightly worse as the size ratio (ori/od) increases above 0.5. The minimum diameter of cortical point image that ensures reasonably uniform coverage is about twice the size of an ocular dominance hypercolumn i.e. about 1.5–2.0 mm.  相似文献   

2.
3.
4.
A nerve net model for the visual cortex of higher vertebrates is presented. A simple learning procedure is shown to be sufficient for the organization of some essential functional properties of single units. The rather special assumptions usually made in the literature regarding preorganization of the visual cortex are thereby avoided. The model consists of 338 neurones forming a sheet analogous to the cortex. The neurones are connected randomly to a retina of 19 cells. Nine different stimuli in the form of light bars were applied. The afferent connections were modified according to a mechanism of synaptic training. After twenty presentations of all the stimuli individual cortical neurones became sensitive to only one orientation. Neurones with the same or similar orientation sensitivity tended to appear in clusters, which are analogous to cortical columns. The system was shown to be insensitive to a background of disturbing input excitations during learning. After learning it was able to repair small defects introduced into the wiring and was relatively insensitive to stimuli not used during training.  相似文献   

5.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

6.
It has been shown that in animals with an intact corpus callosum the influence of photic interference is mainfested above all in EP depression. The degree of EP depression is directly dependent on the strength of the interference and is in inverse relationship with the strength of the determined stimulus. Against the background of a weak interference an other effect is possible in some cases, i.e. facilitation of the EP. These facts are interpreted as a result of postresponse subnormality of neurones and as excitation summation respectively. Section of the corpus callosum results in a weakening of the depressing effect of the photic interference on the EP appearing in response to a determined stimulus, and in an enhanced facilitating influence of weak photic interferences. A stronger influence of binocular photic interference as compared with the monocular one was observed in intact and callosotomized animals. A conclusion has been reached that the split brain has a stronger interference resistance as compared with the intact one.  相似文献   

7.
Peaks in more than 5000 spike train correlograms, obtained from monkey striate cortex, were measured. Earlier work had shown qualitatively that there are frequent prominent peaks having widths in a range around 50 ms, and narrower peaks less than about 7 ms wide. Here we demonstrate that the distribution of peak widths shows a dichotomy.  相似文献   

8.
The layered organization of the cerebral cortex develops in an inside-out pattern, a process which is controlled by the secreted protein reelin. Here we report on cortical lamination in the Gli3 hypomorphic mouse mutant XtJ/Pdn which lacks the cortical hem, a major source of reelin+ Cajal Retzius cells in the cerebral cortex. Unlike other previously described mouse mutants with hem defects, cortical lamination is disturbed in XtJ/Pdn animals. Surprisingly, these layering defects occur in the presence of reelin+ cells which are probably derived from an expanded Dbx1+ progenitor pool in the mutant. However, while these reelin+ neurons and also Calretinin+ cells are initially evenly distributed over the cortical surface they form clusters later during development suggesting a novel role for Gli3 in maintaining the proper arrangement of these cells in the marginal zone. Moreover, the radial glial network is disturbed in the regions of these clusters. In addition, the differentiation of subplate cells is affected which serve as a framework for developing a properly laminated cortex.  相似文献   

9.
A model of spatial-frequency filtering at the level of 4C layer of the striate visual cortex is proposed and based on the well-known literature data. The evidence on conformable character of representation of the visual field on the primary visual cortex and the suggestions concerning uniformity of horizontal connections of cortical neurones serve as the ground of the model. A correspondence between predictions of the model and results of the experiments with shape perception and size discrimination has been obtained.  相似文献   

10.
Receptive field position and orientation disparities are both properties of binocularly discharged striate neurons. Receptive field position desparities have been used as a key element in the neural theory for binocular depth discrimination. Since most striate cells in the cat are binocular, these position disparities require that cells immediately adjacent to one another in the cortex should show a random scatter in their monocular receptive field positions. Superimposed on the progressive topographical representation of the visual field on the striate cortex there is experimental evidence for a localized monocular receptive field position scatter. The suggestion is examined that the binocular position disparities are built up out of the two monocular position scatters. An examination of receptive field orientation disparities and their relation to the random variation in the monocular preferred orientations of immediately adjacent striate neurons also leads to the conclusion that binocular orientation disparities are a consequence of the two monocular scatters. As for receptive field position, the local scatter in preferred orientation is superimposed on a progressive representation of orientation over larger areas of the cortex. The representation in the striate cortex of visual field position and of stimulus orientation is examined in relation to the correlation between the disparities in receptive field position and preferred orientation. The role of orientation disparities in binocular vision is reviewed.  相似文献   

11.
By the third postnatal week, intrinsic developmental programs have established a framework within the cat visual system; this will be used to guide the course of subsequent experience-dependent development. Key elements in this framework are precociously mature cells in visual cortex area 17. These orientation-selective cells are predominantly first-order neurons, they are concentrated in layers IV and VI of area 17, most of them are activated monocularly, many may receive their direct excitatory input from lateral geniculate nucleus X cells, and the distribution of their preferred orientations is biased toward horizontal and vertical. Between the third and the sixth postnatal week, most of the remaining cells in area 17 develop orientation selectivity; this extension of orientation selectivity is blocked or delayed if kittens are deprived of normal patterned visual stimulation. Furthermore, exposure to a limited range of stimulus orientations can lead to an increase in the proportion of orientation-selective cells, and the range of orientation preferences that the cells acquire is restricted by the range of orientations to which the animal is exposed. This occurs with no apparent change in the physiology or morphology of intrinsically selective area 17 cells. Thus selective exposure may have its effect by influencing the connections between the intrinsically selective cells and higher-order neurons in area 17. Experience-dependent changes in the visual system may function to "fine-tune" sensory processing and thus optimize the system's response to the dominant features of the environment. This experience-dependent process could help the young animal to focus its "attention" on those features of its environment that are critical to its survival.  相似文献   

12.
A study has been made of the basal dendrites of Meynert cells in the striate cortex of the macaque monkey in sections parallel to the pial surface impregnated by the Golgi technique. The longest basal dendrite observed extended up to 0.6 mm and the average length of the longest dendrite on each cell was about 0.28 mm. In general, the dendritic field was in the form of an ellipse with mean major and minor axes of 0.22 mm and 0.11 mm respectively, and encompassing an area of about 0.13 mm2. The directions of the major axes were perpendicular to the lunate sulcus in the sections adjacent to the lunate sulcus, and parallel to the horizontal meridian in sections taken from the region of the representation of the meridian, suggesting that the basal dendritic fields are orientated in parallel with the directions of the ocular dominance bands.  相似文献   

13.
Peters  A.  Sethares  C. 《Brain Cell Biology》1997,26(12):779-797
In previous publications we proposed a model of cortical organization in which the pyramidal cells of the cerebral cortex are organized into modules. The modules are centred around the clusters of apical dendrites that originate from the layer 5 pyramidal cells. In monkey striate cortex such modules have an average diameter of 23 μm and the outputs originating from the modules are contained in the vertical bundles of myelinated axons that traverse the deeper layers of the cortex. The present study is concerned with how the double bouquet cells in layer 2/3 of striate cortex relate to these pyramidal cell modules. The double bouquet cells are visualized with an antibody to calbindin, and it has been shown that their vertically oriented axons, or horse tails, are arranged in a regular array, such that there is one horse tail per pyramidal cell module. Within layer 2/3 the double bouquet cell axons run alongside the apical dendritic clusters, while in layer 4C they are closely associated with the myelinated axon bundles. However, the apical dendrites are not the principal targets of the double bouquet cell axons. Most of the neuronal elements post-synaptic to them are the shafts of small dendrites (60%) and dendritic spines, with which they form symmetric synapses. This regular arrangement of the axons of the double-bouquet cells and their relationship to the components of the pyramidal cells modules supports the concept that there are basic, repeating neuronal circuits in the cortex.  相似文献   

14.
15.
16.
The existence of patchy regions in primate striate cortex in which orientation selectivity is reduced, and which lie in the centers of ocular dominance stripes is well established (Hubel and Livingstone 1981). Analysis of functional maps obtained with voltage sensitive dyes (Blasdel and Salama 1986) has suggested that regions where the spatial rate of change of orientation preference is high, tend to be aligned either along the centers of ocular dominance stripes, or to intersect stripe borders at right angles. In this paper I present results from a developmental model which show that a tendency for orientation selectivity to develop more slowly in the centers of ocular dominance stripes would lead to the observed relationships between the layout of ocular dominance and the map of orientation gradient. This occurs despite the fact that there is no direct connection between the measures of preferred orientation (from which the gradient map is derived) and orientation selectivity (which is independent of preferred orientation). I also show that in both the monkey and the model, orientation singularities have an irregular distribution, but tend to be concentrated in the centers of the ocular dominance stripes. The average density of singularities is about 3/ 2, where is the period of the orientation columns. The results are based on an elaboration of previous models (Swindale 1980, 1982) which show how, given initially disordered starting conditions, lateral interactions that are short-range excitatory and long-range inhibitory can lead to the development of patterns of orientation or ocular dominance that resemble those found in monkey striate cortex. To explain the coordinated development of the two kinds of column, it is proposed that there is an additional tendency in development for the rate of increase in orientation selectivity to be reduced in the centers of emerging ocular dominance stripes. This might come about if a single factor modulates plasticity in each cell, or column of cells. Thus plasticity may be turned off first in regions in the centers of ocular dominance stripes where relatively extreme and therefore stable ocular dominance values are achieved early in development. Consequently it will be hard for cells in these columns to modify other properties such as orientation preference or selectivity.  相似文献   

17.
18.
The mechanism mediating the adaptation of cortical Area 17 oriented line detector cells is modeled. A novel form of environment and convergence property (which places a requirement on distribution of optimal stimuli) is utilized to show that classical concepts of synaptic efficiency loss due only to disuse are inadequate under the convergence property. A reasonable alternative is presented: a form of synaptic control which reduces synaptic efficiency at non-active synapses as a function of cell firing rate. We show that adequate solutions to our convergence property exist for members of this class. Simulations of this adequate mechanism indicate that under the very disjoint environment defined, small perturbations of the environment's distribution of stimuli may lead to large perturbations of the distribution of stimuli to which Area 17 cells are optimally responsive. A simulation indicates that this effect may be accentuated by a lateral interaction which causeslike cell optimal stimuli to form near each other in cortex; and the effect may be reduced by a lateral interaction which causes like cell optimal stimuli to not form near each other. A form of neurophysiological experiment is suggested for verification.  相似文献   

19.
Song XM  Wang Y  Zhu Z  Li CY 《PloS one》2010,5(11):e15025
In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF modulating effects. Here, we focus on the morphological differences between the S-ERF and F-ERF neurons. Single unit activities were recorded from V1 of the cat. The ERF properties of each neuron were assessed by area-response functions using sinusoidal grating stimuli. On completion of the functional tests, the cells were injected intracellularly with biocytin. The labeled cells were reconstructed and morphologically characterized in terms of the ERF modulation effects. We show that the vast majority of S-ERF neurons and F-ERF neurons are pyramidal cells and that the two types of cells clearly differ in the size of the soma, in complexity of dendrite branching, in spine size and density, and in the range of innervations of the axon collaterals. We propose that different pyramidal cell phenotypes reflect a high degree of specificity of neuronal connections associated with different types of spatial modulation.  相似文献   

20.
We analyzed striate cortex electrocorticograms of 12 cats in the following states: at rest with eyes closed and with eyes open; after light electrical stimulation of the ears; drowsiness; opening of the eyes after drowsiness; narcotic sleep. Spectral and periodometric analyses of the ECOG revealed state-dependent differences in power spectra from cats in two frequency bands (2.8–5.0 and 13.8–20.8 Hz). It is suggested that the ratio of ECOG power spectra in these frequency bands can be used to evaluate brain activation in cats.Vilnius University, Lithuania. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 672–678, November–December, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号