首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
磁性氧化铁纳米颗粒在磁共振成像方面的应用,已经在全世界范围内得到了广泛的关注,相关研究也被各国科学家高度重视.目前,磁性氧化铁纳米颗粒正在从早期的基于被动识别的肝部磁共振造影,快速转向基于主动识别的磁共振分子影像应用.本文将围绕磁性氧化铁纳米颗粒的生物体内应用,着重介绍磁性纳米颗粒的制备及其在疾病诊断,尤其是在肿瘤早期...  相似文献   

2.
The localized surface plasmon resonance of a silver nanoparticle is responsible for its ability to strongly absorb and scatter light at specific wavelengths. The absorption and scattering spectra (i.e., plots of cross sections as a function of wavelength) of a particle can be predicted using Mie theory (for a spherical particle) or the discrete dipole approximation method (for particles in arbitrary shapes). In this review, we briefly discuss the calculated spectra for silver nanoparticles with different shapes and the synthetic methods available to produce these nanoparticles. As validated in recent studies, there is good agreement between the theoretically calculated and the experimentally measured spectra. We conclude with a discussion of new plasmonic and sensing applications enabled by the shape-controlled nanoparticles.  相似文献   

3.
Voeikova  T. A.  Zhuravliova  O. A.  Kuligin  V. S.  Kozhukhova  E. I.  Ivanov  E. V.  Debabov  V. G. 《Biophysics》2020,65(5):747-753

Cadmium sulfide (CdS) and zinc sulfide (ZnS) biogenic nanoparticles (NPs) were produced by microbial synthesis using bacteria of different taxonomic groups: Gram-negative (Shewanella oneidensis MR-1) and Gram-positive (Bacillus subtilis 168) bacteria in a liquid medium under aerobic conditions in the presence of salts of the respective metals and sulfur. It was shown that the stabilization of nanoparticles in aqueous suspensions is due to the presence of certain protein molecules of the outer membrane of cells, that is, proteins of the families of various receptors, porins, and flagellin, on the nanoparticle (NP) surface. The effect of the protein coating on stability, luminescence, zeta-potential, hydrodynamics diameter and other physiochemical characteristics of nanoparticles was studied. Decolorization of methylene blue dye under the exposure to UV irradiation was used as a model to demonstrate the photocatalytic properties of NPsCdS. This opens the possibility of using biogenic nanoparticles in photocatalysis for industrial wastewater treatment.

  相似文献   

4.
In this review, we highlight our recent achievements in using colloidal gold nanoparticles as building blocks for fabrication of anisotropic and multicomponent nanoparticles (e.g., nanoshells, semiconductor nanocrystals, and gold nanorods). The tunable optical properties of these nanoparticles are well suited for various biomedical and biophotonic applications.  相似文献   

5.
磁性纳米材料,由于其独特的磁学性能、小尺寸效应,被广泛应用于生物医学领域.本文总结了磁性纳米材料的化学设计与合成、表面功能化方法,及其在核磁共振成像、磁控治疗、磁热疗和生物分离等生物医学领域的应用进展.  相似文献   

6.
热疗作为继手术、放疗和化疗后的肿瘤治疗的重要方法之一,自其诞生之初便受到研究人员和产业部门的关注.磁热疗目前已经应用到前列腺癌、脑部肿瘤等临床实验或治疗中,并取得较好的疗效.本文主要介绍基于磁性纳米颗粒的磁热疗产热物理机制与影响因素,以及磁热的亚细胞水平生物学效应.  相似文献   

7.
Biological Trace Element Research - A simple, eco-friendly, green routine co-precipitation method was experimented to synthesize iron nanoparticles (Fe-NPs) using the cell-free supernatant of...  相似文献   

8.
Metal-containing nanoparticles (NPs) are currently used for various biomedical applications. Since such NPs are able to enter the brain, the cells of this organ have to deal with NPs and with NP-derived metal ions. In brain, astrocytes are considered to play a key function in regulating metal homeostasis and in protecting other brain cells against metal toxicity. Thus, among the different types of brain cells, especially astrocytes are of interest regarding the uptake and the handling of metal-containing NPs. This article summarizes the current knowledge on the consequences of an exposure of astrocytes to NPs. Special focus will be given to magnetic iron oxide nanoparticles (IONPs) and silver nanoparticles (AgNPs), since the biocompatibility of these NPs has been studied for astrocytes in detail. Cultured astrocytes efficiently accumulate IONPs and AgNPs in a time-, concentration- and temperature-dependent manner by endocytotic processes. Astrocytes are neither acutely damaged by the exposure to high concentrations of NPs nor by the prolonged intracellular presence of large amounts of accumulated NPs. Although metal ions are liberated from accumulated NPs, NP-derived iron and silver ions are not exported from astrocytes but are rather stored in proteins such as ferritin and metallothioneins which are synthesized in NP-treated astrocytes. The efficient accumulation of large amounts of metal-containing NPs and the upregulation of proteins that safely store NP-derived metal ions suggest that astrocytes protect the brain against the potential toxicity of metal-containing NPs.  相似文献   

9.
L. Torrisi  N. Restuccia 《IRBM》2018,39(5):307-312

Background

The present study it is part of the study of the applications of biocompatible nanoparticles in a biological environment. Nowadays, in fact, nanoparticles are making it possible to reach surprising results in the field of biomaterials, drug delivery and their transport in the blood flux, as the use of the contrast medium for medical imaging and to be injected in tumors before to apply radio and thermal therapy. Nanoparticles modify the chemical and physical properties of solids, liquids, and gases and in particular of physiological liquids, soft and hard biological tissues.

Methods

The present article focalizes on the role of Au nanoparticles for biological and medical applications in which their insertion in cells, tissues, and organs may improve the diagnostic imaging contrast with traditional X-ray imaging and the absorbed doses due to radio- and thermal-therapies. Their injection in the tissue, in fact, increases the effective atomic number of the tissue, thus the increment of the electron density of the medium causes higher radiation LET (linear energy transfer) with the increment of released dose and major effects of radiotherapy expositions.

Main findings

The present paper shows the possibility to generate spherical gold nanoparticles with an average diameter of about 5 nm, pure and not agglomerated, biocompatible, stable and without the addition of chemical agents, by laser ablation of gold material in water. The solution can be directly injected in the extracellular liquid of cell cultures or directly in the blood flux of mice to be transported inside the complex living system. Here it is accumulated in specific organs in which the up-take and decay can be measured using suitable images of fluorescence of the organs of the mouse.

Conclusions

The aim of this research is to transport the nanoparticles in places where tissue disease exists and reduce their concentration in healthy tissues. This permit a better observation of the diseased tissues and their preparation as targeting for radio- and thermal-therapy to be applied to damage tumor cells saving healthy tissues.  相似文献   

10.
异质结构纳米颗粒不仅可以同时拥有多种单组分纳米颗粒不同的性能,实现多功能化,还可能因组分间的相互耦合作用而产生单组分颗粒不具备的新性能,因而在化学化工、生物医学、能源催化等领域引起广泛关注.贵金属具有特殊的光学性质和催化活性;磁性纳米颗粒拥有优异的磁性能,因而备受研究人员关注.贵金属-磁性异质结构纳米材料集合了两种材料优异的性能,能通过不同的异质结构展现出不同的性质.本文根据异质结构的类型,将贵金属-磁性异质结构纳米材料分为核壳结构、蛋黄-壳结构和哑铃结构3种,总结了不同贵金属-磁性异质结构纳米颗粒的特性、制备方法及应用,并重点论述了其在诊疗一体化探针、多模态成像探针和刺激响应型药物载体生物医学领域上的应用.  相似文献   

11.
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.  相似文献   

12.
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.  相似文献   

13.
The oligodendroglial cell line OLN-93 was used as model system to investigate the consequences of iron deprivation or iron excess on cell proliferation. Presence of ferric or ferrous iron chelators inhibited the proliferation of OLN-93 cells in a time and concentration dependent manner, while the application of a molar excess of ferric ammonium citrate (FAC) prevented the inhibition of proliferation by the chelator deferoxamine. Proliferation of OLN-93 cells was not affected by incubation with 300 μM iron that was applied in the form of FAC, FeCl2, ferrous ammonium sulfate or iron oxide nanoparticles, although the cells efficiently accumulated iron during exposure to each of these iron sources. The highest specific iron content was observed for cells that were exposed to the nanoparticles. These data demonstrate that the proliferation of OLN-93 cells depends strongly on the availability of iron and that these cells efficiently accumulate iron from various extracellular iron sources.  相似文献   

14.
Herein, we report the successful development of a novel nanosystem capable of an efficient delivery and temperature-triggered drug release specifically aimed at cancer. The water-soluble 130.1 ± 0.2 nm iron oxide nanoparticles (IONPs) were obtained via synthesis of a monodispersed iron oxide core stabilized with tetramethylammonium hydroxide pentahydrate (TMAOH), followed by coating with the thermoresponsive copolymer poly-(NIPAM-stat-AAm)-block-PEI (PNAP). The PNAP layer on the surface of the IONP undergoes reversible temperature-dependent structural changes from a swollen to a collapsed state resulting in the controlled release of anticancer drugs loaded in the delivery vehicle. We demonstrated that the phase transition temperature of the prepared copolymer can be precisely tuned to the desired value in the range of 36°C–44°C by changing the monomers ratio during the preparation of the nanoparticles. Evidence of modification of the IONPs with the thermoresponsive copolymer is proven by ATR-FTIR and a quantitative analysis of the polymeric and iron oxide content obtained by thermogravimetric analysis. When loaded with doxorubicin (DOX), the IONPs-PNAP revealed a triggered drug release at a temperature that is a few degrees higher than the phase transition temperature of a copolymer. Furthermore, an in vitro study demonstrated an efficient internalization of the nanoparticles into the cancer cells and showed that the drug-free IONPs-PNAP were nontoxic toward the cells. In contrast, sufficient therapeutic effect was observed for the DOX-loaded nanosystem as a function of temperature. Thus, the developed temperature-tunable IONPs-based delivery system showed high potential for remotely triggered drug delivery and the eradication of cancer cells.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0131-x) contains supplementary material, which is available to authorized users.KEY WORDS: drug delivery, IONPs, remote-triggered drug release, thermoresponsive copolymer, tunable LCST  相似文献   

15.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

16.
纳米金颗粒以其优越的理化性质在医学领域发挥独特的作用.近年来越来越多的研究证实了纳米金在肿瘤早期诊断和治疗方面方面有重要作用,尤其是纳米金正被逐步应用肿瘤成像和治疗领域.本文从纳米金的性质,在肿瘤成像和放射治疗方面的应用进展等方面作一综述.  相似文献   

17.

Iron oxide (Fe2O3) nanoparticles (NPs) attract the attention of clinicians for its unique magnetic and paramagnetic properties, which are exclusively used in neurodiagnostics and therapeutics among the other biomedical applications. Despite numerous research findings has already proved neurotoxicity of Fe2O3-NPs, factors affecting neurobehaviour has not been elucidated. In this study, mice were exposed to Fe2O3-NPs (25 and 50 mg/kg body weight) by oral intubation daily for 30 days. It was observed that Fe2O3-NPs remarkably impair motor coordination and memory. In the treated brain regions, mitochondrial damage, depleted energy level and decreased ATPase (Mg2+, Ca2+ and Na+/K+) activities were observed. Disturbed ion homeostasis and axonal demyelination in the treated brain regions contributes to poor motor coordination. Increased intracellular calcium ([Ca2+]i) and decreased expression of growth associated protein 43 (GAP43) impairs vesicular exocytosis could result in insufficient signal between neurons. In addition, levels of dopamine (DA), norepinephrine (NE) and epinephrine (EP) were found to be altered in the subjected brain regions in correspondence to the expression of monoamine oxidases (MAO). Along with all these factors, over expression of glial fibrillary acidic protein (GFAP) confirms the neuronal damage, suggesting the evidences for behavioural changes.

  相似文献   

18.
19.
Solutions of Ag and Au nanoparticles are strongly colored because of localized surface plasmon resonance in the UV/visible spectral region. The optical properties of these nanoparticles may be tuned to suit the needs of the application. This article summarizes our work in recent years on the solution synthesis of nanoparticles with tunable optical properties. The systems of interest include zero-dimensional bimetallic Ag–Au nanoparticles with different structures, one-, two-, and three-dimensional anisotropic monometallic Ag or Au nanoparticles. All of these nanosystems were prepared from colloidal synthesis through simple changes in the synthesis conditions. This is a demonstration of the versatility of colloidal synthesis as a convenient scalable technique for tuning the properties of metallic nanoparticles. Zhang, Tan, and Xie contributed equally to this article  相似文献   

20.
金纳米粒是一种新型纳米载体,具有独特的理化、光学和生物学性质,且具有低毒性、低免疫原性、生物相容性好、体表面积大、易制备、粒径和形态可控、表面易修饰等优点,在生物医学领域和药物传递系统中具有广阔的应用前景。综述金纳米粒在小分子药物和基因药物传递系统中的应用研究新进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号