首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absorption of light by non-refractive spherical shells   总被引:3,自引:0,他引:3  
The transmittance of pigmented and non-refractive spherical shells is a function of the absorbance along the diameter and the ratio of the shell radii. For equal absorbance, thinner shells transmit less and exert a stronger flattening distortion (sieve effect) on the true absorption bands of the pigment. For equal amounts of absorbing material, shells of equal outer radius but having different radial ratios have identical transmittances and flattening coefficients. The transmittance and the flattening effect of spherical particles are considered as limiting cases of spherical shells with zero cavity. The derived expressions can be applied for the correction of the absorption spectra of suspensions of peripherally pigmented biological particles.  相似文献   

2.
The absorbance and circular dichroism (CD) of suspensions is lower than if the same amount of chromophore were uniformly distributed throughout the medium. Several mathematical treatments of this absorption flattening phenomenon have been presented using various assumptions and approximations. This article demonstrates an alternative simulation approach that allows relaxation of assumptions. On current desktop computers, the algorithm runs quickly with enough particles and light paths considered to get answers that are usually accurate to better than 3%. Results from the simulation agree with the most popular analytical model for 0.01 volume fraction of particles, showing that the extent of flattening depends mainly on the absorbance through a particle diameter. Unlike previous models, the simulation can show that flattening is significantly lower when volume fraction increases to 0.1 but is higher when the particles have a size distribution. The simulation can predict the slope of the nearly linear relationship between flattening of CD and the absorbance of the suspension. This provides a method to correct experimental CD data where volume fraction and particle size are known.  相似文献   

3.
Different physico-chemical methods (CD, ORD, small-angle X-ray diffraction, etc) were used for investigating the properties of the DNA compact particles formed in PEG-containing water-salt solutions. It has been shown that small-angle reflection, characteristic of the DNA compact particles, changes from 36.8 A (CPEG = 140 mg/ml) to 25 A (CPEG = 300 mg/ml). The maximal optical activity (the intense negative CD-band and optical rotation [alpha] = 60 000 degrees) are inherent properties of the DNA compact particles formed at CPEG 120--180 mg/ml. The high optical activity points to the twist of DNA chromophores through the DNA molecule resulting in a long-rang pitch (P approximately 2000A).Such macroscopic superhelical structure (diameter 40--30 A) is due to conformational distortion of the DNA double-helix with alternating "left" and "right" orientation of chromophoes. Disappearance of conformation distortion is accompanied by disappearance of the high optical activity of the DNA compact particles and results in a small-angle reflection of 25 A. Taking into account the reasons of formation of the optically-active DNA compact particles conditions are suggested to conserve high optical activity at CPEG equal to 400 mg/ml.  相似文献   

4.
Some optical properties of carrier ampholytes are herewith described. Newly synthesized Ampholines do not possess asymmetric carbon atoms. pH 3–5 and pH 8–10 ranges, synthesized before 1970, rotate the plane of polarized light since they were “reinforced” with glutamic and aspartic acid, in the acidic side, and lysine in the basic region.The various pH ranges possess characteristic chromophores, whose absorbance is strongly pH dependent. These chromophores, when excited at appropriate wavelengths, exhibit a fluorescence emission spectrum, typically reproducing the pH dependence of the corresponding uv spectra.The optical properties here described can be useful in studying Ampholinesmacromolecules interactions. Due to the widespread use of optical scanning in situ of focusing systems, care has to be taken not to mistake Ampholine peaks at 285, 310, 315, 340, and 365 nm for the substance under study.  相似文献   

5.
The circular dichroism spectra of membrane particles are distorted by effects of differential absorption flattening, which are a consequence of the nonrandom distribution of chromophores in these samples. We have shown that this phenomenon is not significant in small unilamellar vesicles with high lipid to protein ratios [Mao, D., & Wallace, B. A. (1984) Biochemistry 23, 2667-2673]. It has recently been claimed [Glaeser, R. M., & Jap, B. K. (1985) Biochemistry 24, 6398-6401] that absorption flattening effects are also inconsequential in large membrane fragments with high protein concentrations, such as purple membrane sheets. This paper will demonstrate that absorption flattening is significant in these samples and that it causes substantial distortion of the calculated protein secondary structures derived from the uncorrected circular dichroism data.  相似文献   

6.
Gerdova A  Kelly SM  Halling P 《Chirality》2011,23(7):574-579
There are well established theoretical models for correction for absorption flattening of circular dichroism (CD) measurements on particle suspensions. However, these have not been directly tested experimentally. We describe a test system with the chiral tris(ethylenediamine)Co(III) complex dissolved in water trapped inside sephadex particles, suspended in 1-butanol. Independent measurements of particle size distribution, volume fraction, and the absorbance of the suspension are used to calculate the required CD correction. The corrected CD signal is found to agree rather well with that for the same amount of Co-complex dispersed uniformly throughout the sample cell. This holds for different particle volume fractions and Co-complex concentrations inside the particles. The correction seems to work despite a substantial scattering contribution to the absorbance, which is not considered in the theoretical models.  相似文献   

7.
The absorbance of a suspension of asymmetrical particles fluctuates when the suspension is stirred in a circular motion. The effect is due to the fact that particles move in spiral orbits and present alternatively their short or long axis to the narrow beam of light used for measurement.Changes in the shape of erythrocytes such as flattening and swelling could be detected and quantitated by measuring the change in the amplitude of the fluctuating absorbance. The diagnostic value of this method is under investigation.  相似文献   

8.
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml.  相似文献   

9.
Indentation tests are commonly used to determine the mechanical behaviour of articular cartilage with varying properties, thickness, and geometry. This investigation evaluated the effect of changing geometric parameters on the properties determined from creep indentation tests. Finite element analyses simulated the indentation behaviour of two models, an excised cylindrical specimen of cartilage with either normal and repair qualities and an osteochondral defect represented as a cylindrical region of repair cartilage integrated with a surrounding layer of normal tissue. For each model, the ratios of indenter radius to cartilage height (a/h=0.5,1.5) and cartilage radius to indenter radius (r/a=2,5) were varied. The vertical displacement of the cartilage under the indenter obtained through finite element analysis was fitted to a numerical algorithm to determine the aggregate modulus, permeability, and Poisson's ratio. Indentation behaviours of cartilage specimens for either model with a/h=1.5 were not affected by r/a for values of 2 and 5. Aggregate modulus was not greatly affected by the geometric changes studied. Permeability was affected by changes in the ratio of specimen to indenter radii for a/h=0.5. These findings suggest that experimental configurations of excised cylindrical specimens, also representing osteochondral defects with no or unknown degree of integration, where the cartilage layer has a/h=0.5 should not have r/a values on the order of 2 for confidence in the mechanical properties determined. Indentation of osteochondral defects where the repair cartilage is fully integrated to the surrounding cartilage can be performed with confidence for all cases tested.  相似文献   

10.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.  相似文献   

11.
Stewart DH  Nixon PJ  Diner BA  Brudvig GW 《Biochemistry》2000,39(47):14583-14594
Photosystem II (PSII) contains a collection of pheophytins (Pheo) and chlorophylls (Chl) that have unique absorbance spectra depending on their electronic structure and the surrounding protein environment. Despite numerous efforts to identify the spectra of each cofactor, differing assignments of the chromophore absorbance bands and electrochromic effects have led to conflicting models of pigment organization and chromophore interactions in PSII. We have utilized low-temperature measurements on well-defined redox states, together with the use of site-directed mutants, to make spectral assignments of several reaction center (RC) chromophores. Cryogenic (77 K) optical spectroscopy has been used to trap the bound redox-active quinone, Q(A), in the reduced form and measure the effect of the redox state of Q(A) on PSII chromophores without interference from other redox-active cofactors. The Q(A)(-) minus Q(A) difference spectrum contains a number of features that represent the perturbation of Pheo and Chl absorbance bands upon Q(A) reduction. Using site-directed mutants in which the axial ligand of the D1-side monomeric core Chl, P(A), is changed (D1-H198Q) or the hydrogen-bonding environment of the D1-side Pheo is modified (D1-Q130E), we have assigned the Q(y)() absorbance bands of four chromophores shifted by Q(A) reduction including both RC Pheos, the D1-side monomeric accessory Chl (B(A)), and one other Chl in PSII. The absorbance maximum of B(A) was identified at 683.5 nm from least-squares fits of the D1-H198Q minus wild type (WT) Q(A)(-) minus Q(A) double-difference spectrum; this assignment provides new evidence of a secondary effect of site-directed mutation on a RC chromophore. The other chromophores were assigned from simultaneous fits of the WT and D1-Q130E spectra in which the parameters of only the D1-side Pheo were allowed to vary. The D1-side and D2-side Pheos were found to have lambda(max) values at 685.6 and 669.3 nm, respectively, and another Chl influenced by Q(A)(-) was identified at 678.8 nm. These assignments are in good agreement with previous spectral analyses of intact PSII preparations and reveal that the number of chromophores affected by Q(A) reduction has been underestimated previously. In addition, the assignments are generally consistent with chromophore positions that are similar in the PSII RC and the bacterial photosynthetic RC.  相似文献   

12.
Using absorption and fluorescence experiments at low temperature with polarized light on oriented samples, the orientation of PS-I-related pigments, both in green plants and in Chlamydomonas reinhardtii, has been investigated on isolated pigment-protein complexes and intact thylakoids. The following observations have been made. (i) The isolation procedure of PS I110, PS I65, LHC I and CP0) particles from pea and C. reinhardtii do not alter significantly the intrinsic orientation of the pigments inside the complexes; (ii) Chl b is a structural component of PS I, linked to the peripheral antenna, with an orientation with respect to the thylakoid plane different from that observed in the main light-harvesting complex (iii) PS I65 (i.e., ‘core’ PS I) of pea and C. reinhardtii contains identical chromophores having the same orientation with respect to the geometrical longest axis (axes) of the complexes. (iv) LHC I and CP0 (i.e., PS I ‘peripheral antenna’) of pea and C. reinhardtii have identical oriented chromophores, except that a long-wavelength component with a high anisotropy is only present in green plants. This set of pigments, which absorbs at 705–725 nm, has the same orientation as the dipoles emitting F735 and also as the QY transition of P-700. (v) All the long-wavelength fluorescence properties of the various studied membranes are explained by these data on isolated PS I complexes: wild-type C. reinhardtii and Chl-b-less barely fluoresce from the core pigments, while a CP1 deficient mutant of C. reinhardtii and wild-type barley fluoresce from the antenna pigments.  相似文献   

13.
Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.  相似文献   

14.
The spectral reflectance measurements in tissue reveal physiological meaning. Normally, functional changes like, increase in total hemoglobin concentration, decrease in oxygen saturation, etc., are observed when there is an abnormality creeping in the normal tissue. These functional changes can act together to reveal disease by non-invasive near-infrared (NIR) spectroscopy, as it influence its optical properties. In the present study, a simple two dimensional, four layer model of breast is proposed. The four layers are (i) skin (ii) adipose layer (iii) glandular tissue and (iv) muscle. Each layer is modeled with appropriate biological chromophores like hemoglobin, water, lipid and melanin. From the literature, the concentrations and molar extinction coefficients of the chromophores in various layers of the model are obtained. These values are used to calculate the wavelength dependent absorption characteristics of a particular layer. Monte Carlo simulation of diffuse reflectance (percentage of back reflected photons after multiple scattering with the broad variety of angles) are simulated for the modeled breast tissue with and without diseased condition. Near-infrared wavelengths are chosen, as the depth of penetration in tissue is more compared to UV and visible region. Simulations are carried out on the modeled breast tissue for different races (skin colors) at different NIR wavelengths. Results show significant changes in diffuse reflectance and relative absorbance for normal and diseased breast tissues for differently pigmented model. This model can be used to study the photo dynamical therapy, drug delivery and prognosis of cancer.  相似文献   

15.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.A part of this work was performed while one of the authors (T.K.) was a Visiting Investigator of Japan Society for the Promotion of Science at Kyoto University from April, 1977 to March, 1978  相似文献   

16.
The facile synthesis and photophysical properties of three nonhydrolyzable thioglycosylated porphyrinoids are reported. Starting from meso-perfluorophenylporphyrin, the nonhydrolyzable thioglycosylated porphyrin (PGlc?), chlorin (CGlc?), isobacteriochlorin (IGlc?), and bacteriochlorin (BGlc?) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. Compared to the porphyrin in phosphate buffered saline, CGlc? has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield, whereas IGlc? has broad Q-bands and a 12-fold increase in fluorescence quantum yield. BGlc? has a similar fluorescence quantum yield to PGlc? (<10%), but the lowest-energy absorption/emission peaks of BGlc? are considerably red-shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. The uptake of CGlc?, IGlc?, and BGlc? derivatives into cells such as human breast cancer cells MDA-MB-231 and K:Molv NIH 3T3 mouse fibroblast cells can be observed at nanomolar concentrations. Photobleaching under these conditions is minimal.  相似文献   

17.
Plasmonic nanoparticles are an attractive material for light harvesting applications due to their easily modified surface, high surface area and large extinction coefficients which can be tuned across the visible spectrum. Research into the plasmonic enhancement of optical transitions has become popular, due to the possibility of altering and in some cases improving photo-absorption or emission properties of nearby chromophores such as molecular dyes or quantum dots. The electric field of the plasmon can couple with the excitation dipole of a chromophore, perturbing the electronic states involved in the transition and leading to increased absorption and emission rates. These enhancements can also be negated at close distances by energy transfer mechanism, making the spatial arrangement of the two species critical. Ultimately, enhancement of light harvesting efficiency in plasmonic solar cells could lead to thinner and, therefore, lower cost devices. The development of hybrid core/shell particles could offer a solution to this issue. The addition of a dielectric spacer between a gold nanoparticles and a chromophore is the proposed method to control the exciton plasmon coupling strength and thereby balance losses with the plasmonic gains. A detailed procedure for the coating of gold nanoparticles with CdS and ZnS semiconductor shells is presented. The nanoparticles show high uniformity with size control in both the core gold particles and shell species allowing for a more accurate investigation into the plasmonic enhancement of external chromophores.  相似文献   

18.
Cyclic octapeptide carrying one or two nonlinear optical chromophores, disperse red 1 (DR‐1), was synthesized and immobilized on a substrate to attain an active surface for second‐harmonic generation (SHG). Each cyclic octapeptide was transferred on a fused quartz substrate by the Langmuir–Blodgett (LB) method to afford a uniform monolayer. Infrared reflection–absorption spectroscopy of the LB monolayer revealed that the cyclic skeleton lay roughly flat on the surface. The SHG intensity from the monolayer of the cyclic peptide with two DR‐1 units was stronger than that from that with one DR‐1 unit. The difference is discussed in terms of molecular orientation and surface density of the active chromophores. The cyclic peptide is shown here to be an effective scaffold to modify a substrate surface with functional groups of a monolayer with taking stability of the monolayer and orientation of the functional group into consideration. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Immobilised enzymes are widely used in industry, but the reasons for loss of activity of such biocatalysts are usually not known. We have used circular dichroism (CD) to investigate the structure of one such system, i.e., subtilisin Carlsberg (SC) immobilised on silica gel particles (60 microm). A number of technical problems have to be overcome in order to obtain appropriate data from which conclusions can be drawn. A rotating cell holder has been developed to avoid sedimentation of the silica particles during the collection of spectra. By moving the cell holder as close as possible to the detector window, the effects of differential scattering can be minimised. However, the effects of absorption flattening limit the extent to which reliable quantitative information on secondary structure content can be obtained from far UV CD studies. We have used an empirical approach based on absorbance units derived from the high-tension voltage to correct for absorption flattening effects. After applying the correction there was satisfactory agreement with the solution spectra. Comparison of the fresh and used (inactive) SC-silica gel spectra in organic media reveals substantial change in the secondary structure. Additional evidence for loss of native conformation is provided by the significant decrease in the near UV CD spectrum. These results for the first time clearly demonstrate the origin of enzyme instability in the immobilised state.  相似文献   

20.
在生物医学光学成像方法的研发、评估和使用中,需要用到在较长时间内具有稳定的光学及力学属性的生物组织仿体,以使光学成像实验可以重复进行。这些仿体一般由混有散射、吸收粒子的基质制成。常用散射粒子包括脂质微粒、聚合物微球、金属氧化物粉末和金纳米粒子等,吸收粒子(及其溶液)包括血液、印度墨水(Indian Ink)和分子染料等。常用来模拟组织特性的基质包括硅胶、纤维蛋白和聚乙烯醇凝胶(Polyvinyl alcohol cryogel,PVA-C)等。讨论和分析常见仿体的光学性质(吸收系数、散射系数、折射率)和力学性质(弹性和粘弹性)。从生物相容性、制备难易程度及耗时情况、稳定性等方面比较了几种常见散射粒子、吸收粒子和基质的优缺点,并据此总结其适用范围。最后对仿体研究的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号