首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We investigate the role of adaptation in a neural field model, composed of ON and OFF cells, with delayed all-to-all recurrent connections. As external spatially profiled inputs drive the network, ON cells receive inputs directly, while OFF cells receive an inverted image of the original signals. Via global and delayed inhibitory connections, these signals can cause the system to enter states of sustained oscillatory activity. We perform a bifurcation analysis of our model to elucidate how neural adaptation influences the ability of the network to exhibit oscillatory activity. We show that slow adaptation encourages input-induced rhythmic states by decreasing the Andronov–Hopf bifurcation threshold. We further determine how the feedback and adaptation together shape the resonant properties of the ON and OFF cell network and how this affects the response to time-periodic input. By introducing an additional frequency in the system, adaptation alters the resonance frequency by shifting the peaks where the response is maximal. We support these results with numerical experiments of the neural field model. Although developed in the context of the circuitry of the electric sense, these results are applicable to any network of spontaneously firing cells with global inhibitory feedback to themselves, in which a fraction of these cells receive external input directly, while the remaining ones receive an inverted version of this input via feedforward di-synaptic inhibition. Thus the results are relevant beyond the many sensory systems where ON and OFF cells are usually identified, and provide the backbone for understanding dynamical network effects of lateral connections and various forms of ON/OFF responses.  相似文献   

2.
Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC) in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1) feedforward from sensory input to the PPC to a motor output area, 2) feedforward with the addition of an efference copy from the motor area, 3) feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4) feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.  相似文献   

3.
The magnitude and apparent complexity of the brain''s connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron''s response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.  相似文献   

4.
The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections (“communication through resonance”). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.  相似文献   

5.
Synchronized oscillation is very commonly observed in many neuronal systems and might play an important role in the response properties of the system. We have studied how the spontaneous oscillatory activity affects the responsiveness of a neuronal network, using a neural network model of the visual cortex built from Hodgkin-Huxley type excitatory (E-) and inhibitory (I-) neurons. When the isotropic local E-I and I-E synaptic connections were sufficiently strong, the network commonly generated gamma frequency oscillatory firing patterns in response to random feed-forward (FF) input spikes. This spontaneous oscillatory network activity injects a periodic local current that could amplify a weak synaptic input and enhance the network's responsiveness. When E-E connections were added, we found that the strength of oscillation can be modulated by varying the FF input strength without any changes in single neuron properties or interneuron connectivity. The response modulation is proportional to the oscillation strength, which leads to self-regulation such that the cortical network selectively amplifies various FF inputs according to its strength, without requiring any adaptation mechanism. We show that this selective cortical amplification is controlled by E-E cell interactions. We also found that this response amplification is spatially localized, which suggests that the responsiveness modulation may also be spatially selective. This suggests a generalized mechanism by which neural oscillatory activity can enhance the selectivity of a neural network to FF inputs.  相似文献   

6.
Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson’s disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson’s disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.  相似文献   

7.
 This paper studies the relation between the functional synaptic connections between two artificial neural networks and the correlation of their spiking activities. The model neurons had realistic non-oscillatory dynamic properties and the networks showed oscillatory behavior as a result of their internal synaptic connectivity. We found that both excitation and inhibition cause phase locking of the oscillating activities. When the two networks excite each other the oscillations synchronize with zero phase lag, whereas mutual inhibition between the networks resulted in an anti-phase (half period phase difference) synchronization. Correlations between the activities of the two networks can also be caused by correlated external inputs driving the systems (common input). Our analysis shows that when the networks exhibit oscillatory behavior and the rate of the common input is smaller than a characteristic network oscillator frequency, the cross-correlation functions between the activities of two systems still carry information about the mutual synaptic connectivity. This information can be retrieved with linear partialization, removing the influence of the common input. We further explored the network responses to periodic external input. We found that when the input is of a frequency smaller than a certain threshold, the network responds with bursts at the same frequency as the input. Above the threshold, the network responds with a fraction of the input frequency. This frequency threshold, characterizing the oscillatory properties of the network, is also found to determine the limit to which linear partialization works. Received: 20 October 1995 / Accepted in revised form: 20 May 1996  相似文献   

8.
The complex connectivity of the cerebral cortex is a topic of much study, yet the link between structure and function is still unclear. The processing capacity and throughput of information at individual brain regions remains an open question and one that could potentially bridge these two aspects of neural organization. The rate at which information is emitted from different nodes in the network and how this output process changes under different external conditions are general questions that are not unique to neuroscience, but are of interest in multiple classes of telecommunication networks. In the present study we show how some of these questions may be addressed using tools from telecommunications research. An important system statistic for modeling and performance evaluation of distributed communication systems is the time between successive departures of units of information at each node in the network. We describe a method to extract and fully characterize the distribution of such inter-departure times from the resting-state electroencephalogram (EEG). We show that inter-departure times are well fitted by the two-parameter Gamma distribution. Moreover, they are not spatially or neurophysiologically trivial and instead are regionally specific and sensitive to the presence of sensory input. In both the eyes-closed and eyes-open conditions, inter-departure time distributions were more dispersed over posterior parietal channels, close to regions which are known to have the most dense structural connectivity. The biggest differences between the two conditions were observed at occipital sites, where inter-departure times were significantly more variable in the eyes-open condition. Together, these results suggest that message departure times are indicative of network traffic and capture a novel facet of neural activity.  相似文献   

9.
《Journal of Physiology》2009,103(6):342-347
The purpose of this study is to investigate information processing in the primary somatosensory system with the help of oscillatory network modelling. Specifically, we consider interactions in the oscillatory 600 Hz activity between the thalamus and the cortical Brodmann areas 3b and 1. This type of cortical activity occurs after electrical stimulation of peripheral nerves such as the median nerve. Our measurements consist of simultaneous 31-channel MEG and 32-channel EEG recordings and individual 3D MRI data. We perform source localization by means of a multi-dipole model. The dipole activation time courses are then modelled by a set of coupled oscillators, described by linear second-order ordinary delay differential equations (DDEs). In particular, a new model for the thalamic activity is included in the oscillatory network. The parameters of the DDE system are successfully fitted to the data by a nonlinear evolutionary optimization method. To activate the oscillatory network, an individual input function is used, based on measurements of the propagated stimulation signal at the biceps. A significant feedback from the cortex to the thalamus could be detected by comparing the network modelling with and without feedback connections. Our finding in humans is supported by earlier animal studies. We conclude that this type of rhythmic brain activity can be modelled by oscillatory networks in order to disentangle feed forward and feedback information transfer.  相似文献   

10.
Simulations of EEG data provide the understanding of how the limbic system exhibits normal and abnormal states of the electrical activity of the brain. While brain activity exhibits a type of homeostasis of excitatory and inhibitory mesoscopic neuron behavior, abnormal neural firings found in the seizure state exhibits brain instability due to runaway oscillatory entrained neural behavior. We utilize a model of mesoscopic brain activity, the KIV model, where each network represents the areas of the limbic system, i.e., hippocampus, sensory cortex, and the amygdala. Our model initially demonstrates oscillatory entrained neural behavior as the epileptogenesis, and then by increasing the external weights that join the three networks that represent the areas of the limbic system, seizure activity entrains the entire system. By introducing an external signal into the model, simulating external electrical titration therapy, the modeled seizure behavior can be ‘rebalanced’ back to its normal state.  相似文献   

11.
The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.  相似文献   

12.
Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.  相似文献   

13.
Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus.  相似文献   

14.
Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment.  相似文献   

15.
The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL) would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo) in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI), the key node of cognitive control network (CCN) and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC), a key node in the default mode network (DMN). Moreover, seed-based resting–state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network.  相似文献   

16.
‘Phase amplitude coupling’ (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity – also referred to as ‘cross-frequency coupling’ or ‘nested rhythms’ – has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data.  相似文献   

17.
Signals representing the value assigned to stimuli at the time of choice have been repeatedly observed in ventromedial prefrontal cortex (vmPFC). Yet it remains unknown how these value representations are computed from sensory and memory representations in more posterior brain regions. We used electroencephalography (EEG) while subjects evaluated appetitive and aversive food items to study how event-related responses modulated by stimulus value evolve over time. We found that value-related activity shifted from posterior to anterior, and from parietal to central to frontal sensors, across three major time windows after stimulus onset: 150-250 ms, 400-550 ms, and 700-800 ms. Exploratory localization of the EEG signal revealed a shifting network of activity moving from sensory and memory structures to areas associated with value coding, with stimulus value activity localized to vmPFC only from 400 ms onwards. Consistent with these results, functional connectivity analyses also showed a causal flow of information from temporal cortex to vmPFC. Thus, although value signals are present as early as 150 ms after stimulus onset, the value signals in vmPFC appear relatively late in the choice process, and seem to reflect the integration of incoming information from sensory and memory related regions.  相似文献   

18.
The early processing of sensory information by neuronal circuits often includes a reshaping of activity patterns that may facilitate further processing in the brain. For instance, in the olfactory system the activity patterns that related odors evoke at the input of the olfactory bulb can be highly similar. Nevertheless, the corresponding activity patterns of the mitral cells, which represent the output of the olfactory bulb, can differ significantly from each other due to strong inhibition by granule cells and peri-glomerular cells. Motivated by these results we study simple adaptive inhibitory networks that aim to separate or even orthogonalize activity patterns representing similar stimuli. Since the animal experiences the different stimuli at different times it is difficult for the network to learn the connectivity based on their similarity; biologically it is more plausible that learning is driven by simultaneous correlations between the input channels. We investigate the connection between pattern orthogonalization and channel decorrelation and demonstrate that networks can achieve effective pattern orthogonalization through channel decorrelation if they simultaneously equalize their output levels. In feedforward networks biophysically plausible learning mechanisms fail, however, for even moderately similar input patterns. Recurrent networks do not have that limitation; they can orthogonalize the representations of highly similar input patterns. Even when they are optimized for linear neuronal dynamics they perform very well when the dynamics are nonlinear. These results provide insights into fundamental features of simplified inhibitory networks that may be relevant for pattern orthogonalization by neuronal circuits in general.  相似文献   

19.
《Bio Systems》2007,87(1-3):53-62
The dynamics of activity in interactive neural populations is simulated by the networks of Wilson–Cowan oscillators. Two extreme cases of connection architectures in the networks are considered: (1) 1D and 2D regular and homogeneous grids with local connections and (2) sparse random coupling. Propagating waves in the network have been found under the stationary external input and the regime of partial synchronization has been obtained for the periodic input. It has been shown that in the case of random coupling about 60% of neural populations demonstrate oscillatory activity and some of these oscillations are synchronous. The role of different types of dynamics in information processing is discussed. In particular, we discuss the regime of partial synchronization in the context of cortical microcircuits.  相似文献   

20.
XH Yan  MO Magnasco 《PloS one》2012,7(7):e41419
A number of studies have suggested that many properties of brain activity can be understood in terms of critical systems. However it is still not known how the long-range susceptibilities characteristic of criticality arise in the living brain from its local connectivity structures. Here we prove that a dynamically critically-poised model of cortex acquires an infinitely-long ranged susceptibility in the absence of input. When an input is presented, the susceptibility attenuates exponentially as a function of distance, with an increasing spatial attenuation constant (i.e., decreasing range) the larger the input. This is in direct agreement with recent results that show that waves of local field potential activity evoked by single spikes in primary visual cortex of cat and macaque attenuate with a characteristic length that also increases with decreasing contrast of the visual stimulus. A susceptibility that changes spatial range with input strength can be thought to implement an input-dependent spatial integration: when the input is large, no additional evidence is needed in addition to the local input; when the input is weak, evidence needs to be integrated over a larger spatial domain to achieve a decision. Such input-strength-dependent strategies have been demonstrated in visual processing. Our results suggest that input-strength dependent spatial integration may be a natural feature of a critically-balanced cortical network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号