首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vascular endothelial cells (EC) produced IL-1 alpha but not IL-1 beta into extracellular fluids. Vascular smooth muscle cells (SMC), on the other hand, produced both IL-1 alpha and IL-1 beta, and IL-1 beta produced was much higher than IL-1 alpha. The addition of recombinant human IL-1 beta or recombinant human TNF-alpha significantly enhanced IL-1 alpha production in EC, and IL-1 alpha and IL-1 beta production in SMC. IL-1 beta release was not observed even when EC were stimulated with TNF-alpha. These results suggest that the species of released form of IL-1 are different in different cell types and that cytokines enhance IL-1 alpha and IL-1 beta production in SMC and IL-1 alpha production in EC.  相似文献   

2.
Cultured airway smooth muscle cells subjected to cyclic deformational strain have increased cell content of myosin light chain kinase (MLCK) and myosin and increased formation of actin filaments. To determine how these changes may increase cell contractility, we measured isometric force production with changes in cytosolic calcium in individual permeabilized cells. The pCa for 50% maximal force production was 6.6+/-0.4 in the strain cells compared with 5.9+/-0.3 in control cells, signifying increased calcium sensitivity in strain cells. Maximal force production was also greater in strain cells (8.6+/-2.9 vs. 5.7+/-3.1 microN). The increased maximal force production in strain cells persisted after irreversible thiophosphorylation of myosin light chain, signifying that increased force could not be explained by differences in myosin light chain phosphorylation. Cells strained for brief periods sufficient to increase cytoskeletal organization but insufficient to increase contractile protein content also produced more force, suggesting that strain-induced cytoskeletal reorganization also increases force production.  相似文献   

3.
IL-1beta inhibits isoproterenol (ISO)-induced relaxation of cultured human airway smooth muscle (HASM) cells. The purpose of this study was to determine whether IL-1beta can also suppress ISO-induced cAMP response element (CRE)-dependent gene expression. ISO (10 microM) caused a marked increase in CRE-binding protein (CREB) phosphorylation, which was attenuated by IL-1beta (2 ng/ml). This effect of IL-1beta was abolished by the cyclooxygenase (COX) inhibitor indomethacin. To examine CRE-driven gene expression, we transiently transfected HASM cells with a construct containing CRE upstream of a luciferase reporter gene. ISO (6 h) caused a sixfold increase in luciferase activity. IL-1beta (24 h) alone also increased luciferase activity, although to a lesser extent (2-fold). However, the ability of ISO to elicit luciferase expression was markedly reduced in cells treated with IL-1beta. Indomethacin, the MEK and p38 inhibitors U-0126 and SB-203580, the protein kinase A inhibitor H-89, and dexamethasone each completely abolished the ability of IL-1beta to induce CRE-driven gene expression but only slightly increased the ability of ISO to induce CRE-driven gene expression in IL-1beta-treated cells. IL-1beta also attenuated dibutyryl cAMP-induced CRE-driven gene expression, but not dibutyryl cAMP-induced CREB phosphorylation. Tumor necrosis factor-alpha (10 ng/ml) also attenuated ISO-induced CRE-driven gene expression, even though it was without effect on ISO-induced cAMP formation or ISO-induced CREB phosphorylation. The results suggest that IL-1beta and tumor necrosis factor-alpha may attenuate the ability of beta-agonists to induce expression of genes with CRE in their regulatory regions at least in part through events downstream of CREB phosphorylation.  相似文献   

4.
We have previously reported that interleukin (IL)-1 beta causes beta-adrenergic hyporesponsiveness in cultured human airway smooth muscle (HASM) cells by increasing cyclooxygenase (COX)-2 expression. The purpose of this study was to determine whether p38 mitogen-activated protein (MAP) kinase is involved in these events. IL-1 beta (2 ng/ml for 15 min) increased p38 phosphorylation fourfold. The p38 inhibitor SB-203580 (3 microM) decreased IL-1 beta-induced COX-2 by 70 +/- 7% (P < 0.01). SB-203580 had no effect on PGE(2) release in control cells but caused a significant (70-80%) reduction in PGE(2) release in IL-1 beta-treated cells. IL-1 beta increased the binding of nuclear proteins to the oligonucleotides encoding the consensus sequences for activator protein (AP)-1 and nuclear factor (NF)-kappa B, but SB-203580 did not affect this binding, suggesting that the mechanism of action of p38 was not through AP-1 or NF-kappa B activation. The NF-kappa B inhibitor MG-132 did not alter IL-1 beta-induced COX-2 expression, indicating that NF-kappa B activation is not required for IL-1 beta-induced COX-2 expression in HASM cells. IL-1 beta attenuated isoproterenol-induced decreases in HASM stiffness as measured by magnetic twisting cytometry, and SB-203580 abolished this effect. These results are consistent with the hypothesis that p38 is involved in the signal transduction pathway through which IL-1 beta induces COX-2 expression, PGE(2) release, and beta-adrenergic hyporesponsiveness.  相似文献   

5.
We measured the time course and heterogeneity of responses to contractile and relaxing agonists in individual human airway smooth muscle (HASM) cells in culture. To this end, we developed a microrheometer based on magnetic twisting cytometry adapted with a novel optical detection system. Ferromagnetic beads (4.5 microm) coated with Arg-Gly-Asp peptide were bound to integrins on the cell surface. The beads were twisted in a sinusoidally varying magnetic field at 0.75 Hz. Oscillatory bead displacements were recorded using a phase-synchronized video camera. The storage modulus (cell stiffness; G'), loss modulus (friction; G"), and hysteresivity (eta; ratio of G" to G') could be determined with a time resolution of 1.3 s. Within 5 s after addition of histamine (100 microM), G' increased by 2.2-fold, G" increased by 3.0-fold, and eta increased transiently from 0.27 to 0.34. By 20 s, eta decreased to 0.25, whereas G' and G" remained above baseline. Comparable results were obtained with bradykinin (1 microM). These changes in G', G", and eta measured in cells were similar to but smaller than those reported for intact muscle strips. When we ablated baseline tone by adding the relaxing agonist dibutyryl cAMP (1 mM), G' decreased within 5 min by 3.3-fold. With relaxing and contracting agonists, G' could be manipulated through a contractile range of 7.3-fold. Cell populations exhibited a log-normal distribution of baseline stiffness (geometric SD = 2.8) and a heterogeneous response to both contractile and relaxing agonists, partly attributable to variability of baseline tone between cells. The total contractile range of the cells (from maximally relaxed to maximally stimulated), however, was independent of baseline stiffness. We conclude that HASM cells in culture exhibit a clear, although heterogeneous, response to contractile and relaxing agonists and express the essential mechanical features characteristic of the contractile response observed at the tissue level.  相似文献   

6.
7.
Acrolein administered to isolated airways has been shown to alter airway responsiveness as a consequence of its effect on Ca(2+) signaling. To examine the mechanisms involved, we studied the effect of acrolein on ACh- and caffeine-induced membrane currents (patch-clamp) in myocytes freshly isolated from rat trachea. In cells clamped at -60 mV, ACh (0.1-10 microM) induced a concentration-dependent inward current, which, in approximately 50% of the cells, was followed by current oscillations in response to high concentration of ACh (10 microM). Exposure to acrolein (0.2 microM) for 10 min significantly enhanced the amplitude of the low-ACh (0.1 microM) concentration-induced initial peak of current (318.8 +/- 28.3 vs. 251.2 +/- 40.3 pA; n = 25, P < 0.05). At a high-ACh concentration (10 microM), the frequency at which subsequent peaks occurred was significantly increased (13.2 +/- 1.1 vs. 8.7 +/- 2 min(-1); n = 20, P < 0.05). ACh-induced current was identified as a Ca(2+)-activated Cl(-) current. In contrast, similar exposure to acrolein, which does not alter caffeine-induced Ca(2+) release, did not alter caffeine-induced transient membrane currents (595 +/- 45 and 640 +/- 45 pA in control cells and in cells exposed to acrolein, respectively; n = 15). It is concluded that acrolein alters ACh-induced current as a consequence of its effect on the cytosolic Ca(2+) concentration response and that the protective role of inhibitors of Cl(-) channels in air pollutant-induced airway hyperresponsiveness should be examined.  相似文献   

8.
Tryptase, the major mast cell product, is considered to play an important role in airway inflammation and hyperresponsiveness. Tryptase produces different, sometimes opposite, effects on airway responsiveness (bronchoprotection and/or airway contraction). This study was designed to examine the effect of human lung tryptase and activation of protease-activated receptor (PAR)-2 by synthetic activated peptide (AP) SLIGKV-NH(2) on Ca(2+) signaling in human airway smooth muscle (HASM) cells. Immunocytochemistry revealed that PAR-2 was expressed by HASM cells. Tryptase (7.5--30 mU/ml) induced a concentration-dependent transient relative rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) that reached 207 +/- 32 nM (n = 10) measured by indo 1 spectrofluorometry. The protease inhibitors leupeptin or benzamidine (100 microM) abolished tryptase-induced [Ca(2+)](i) increase. Activation of PAR-2 by AP (1-100 microM) also induced a concentration-dependent transient rise in [Ca(2+)](i), whereas the reverse peptide produced no effect. There was a homologous desensitization of the [Ca(2+)](i) response on repeated stimulation with tryptase or AP. U-73122, a specific phospholipase C (PLC) antagonist, xestospongin, an inositol trisphosphate (IP(3))-receptor antagonist, or thapsigargin, a sarcoplamic Ca(2+)-ATPase inhibitor, abolished tryptase-induced [Ca(2+)](i) response, whereas Ca(2+) removal, in the additional presence of EGTA, had no effect. Calphostin C, a protein kinase C inhibitor, increased PAR-2 [Ca(2+)](i) response. Our results indicate that tryptase activates a [Ca(2+)](i) response, which appears as PAR-2 mediated in HASM cells. Signal transduction implicates the intracellular Ca(2+) store via PLC activation and thus via the IP(3) pathway. This study provides evidence that tryptase, which is increasingly recognized as an important mediator in airway inflammation and hyperresponsiveness, is also a potent direct agonist at the site of airway smooth muscle.  相似文献   

9.
Asthma, a chronic inflammatory disease of the airways, involves the increased expression of inflammatory mediators, including granulocyte-monocyte colony-stimulating factor (GM-CSF). Heme oxygenase-1 (HO-1), a stress-response protein, confers protection against oxidative stress. We hypothesized that carbon monoxide (CO), a byproduct of HO-1-dependent heme catabolism, regulates GM-CSF synthesis in human airway smooth muscle cells (HASMC). IL-1beta treatment induced a time-dependent induction of GM-CSF in HASMC. Furthermore, IL-1beta stimulated the major MAPK pathways, including ERK1/ERK2, JNK, and p38 MAPK. Exposure of HASMC to CO at low concentration (250 ppm) markedly inhibited IL-1beta-induced GM-CSF synthesis (>90%) compared with air-treated controls. CO treatment inhibited IL-1beta-induced ERK1/2 activation but did not inhibit JNK and p38 MAPK. Furthermore, CO increased cGMP levels in HASMC. Inhibition of guanylate cyclase by IH-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-1 (ODQ) abolished the inhibitory effects of CO on GM-CSF synthesis and ERK1/2 activation. Collectively, these data demonstrate that the inhibitory effect of CO on GM-CSF synthesis depends on ERK1/2 MAPK and guanylate cyclase/cGMP-dependent pathways.  相似文献   

10.
The interleukin-17B receptor (IL-17BR) is expressed in a variety of tissues and is upregulated under inflammatory conditions. This receptor binds both its cognate ligand IL-17B and IL-17E/IL-25, a novel cytokine known to promote Th2 responses. The present study shows that airway smooth muscle cells express IL-17BR in vitro and that its expression is upregulated by TNF-alpha and downregulated by IFN-gamma. Our data indicate that TNF-alpha upregulates IL-17BR mainly through nuclear factor-kappaB as assessed with the IkappaB kinase 2 inhibitor AS-602868. In addition, both IFN-gamma and dexamethasone are able to antagonize a TNF-alpha-induced IL-17BR increase in mRNA expression. The mitogen-activated protein kinase kinase inhibitor U0126 totally reversed the inhibition observed with IFN-gamma, suggesting the involvement of the extracellular signal-regulated kinase pathway in this effect. In addition, on stimulation with IL-17E, airway smooth muscle cells increase their expression of ECM components, namely procollagen-alphaI and lumican mRNA. Furthermore, immunohistochemical analysis of biopsies from asthmatic subjects reveals that this receptor is abundant in smooth muscle layers. This is the first report showing IL-17BR receptor in structural cells of the airways. Our results suggest a potential proremodeling effect of IL-17E on airway smooth muscle cells through the induction of ECM and that its receptor is upregulated by proinflammatory conditions.  相似文献   

11.
Airway smooth muscle exhibits the property of length adaptation, which enables it to optimize its contractility to the mechanical conditions under which it is activated. Length adaptation has been proposed to result from a dynamic modulation of contractile and cytoskeletal filament organization, in which the cell structure adapts to changes in cell shape at different muscle lengths. Changes in filament organization would be predicted to alter muscle stiffness and extensibility. We analyzed the effects of tracheal muscle length at the time of contractile activation on the stiffness and extensibility of the muscle during subsequent stretch over a constant range of muscle lengths. Muscle strips were significantly stiffer and less extensible after contractile activation at a short length than after activation at a long length, consistent with the prediction of a shorter, thicker array of the cytoskeletal filaments at a short muscle length. Stretch beyond the length of contractile activation resulted in a persistent reduction in stiffness, suggesting a stretch-induced structural rearrangement. Our results support a model in which the filament organization of airway smooth muscle cells is plastic and can be acutely remodeled to adapt to the changes in the external physical environment.  相似文献   

12.
Because both T lymphocyte and airway smooth muscle (ASM) cell activation are events fundamentally implicated in the pathobiology of asthma, this study tested the hypothesis that cooperative intercellular signaling between activated T cells and ASM cells mediates proasthmatic changes in ASM responsiveness. Contrasting the lack of effect of resting human T cells, anti-CD3-activated T cells were found to adhere to the surface of naive human ASM cells, increase ASM CD25 cell surface expression, and induce increased constrictor responsiveness to acetylcholine and impaired relaxation responsiveness to isoproterenol in isolated rabbit ASM tissues. Comparably, exposure of resting T cells to ASM cells prestimulated with IgE immune complexes reciprocally elicited T cell adhesion to ASM cells and up-regulated T cell expression of CD25. Extended studies demonstrated that: 1) ASM cells express mRNAs and proteins for the cell adhesion molecules (CAMs)/costimulatory molecules, CD40, CD40L, CD80, CD86, ICAM-1 (CD54), and LFA-1 (CD11a/CD18); 2) apart from LFA-1, ASM cell surface expression of the latter molecules is up-regulated in the presence of activated T cells; and 3) pretreatment of ASM cells and tissues with mAbs directed either against CD11a or the combination of CD40 and CD86 completely abrogated both the activated T cell-induced changes in expression of the above CAMs/costimulatory molecules in ASM cells and altered ASM tissue responsiveness. Collectively, these observations identify the presence of bi-directional cross-talk between activated T cells and ASM cells that involves coligation of specific CAMs/costimulatory molecules, and this cooperative intercellular signaling mediates the induction of proasthmatic-like changes in ASM responsiveness.  相似文献   

13.
The ability of rabbit trachealis to undergo plastic adaptation to chronic shortening or lengthening was assessed by setting the muscle preparations at three lengths for 24 h in relaxed state: a reference length in which applied force was approximately 1-2% of maximal active force (P(o)) and lengths considerably shorter and longer than the reference. Passive and active length-tension (L-T) curves for the preparations were then obtained by electrical field stimulation at progressively increasing muscle length. Classically shaped L-T curves were obtained with a distinct optimal length (L(o)) at which P(o) developed; however, both the active and passive L-T curves were shifted, whereas P(o) remained unchanged. L(o) was 72% and 148% that of the reference preparations for the passively shortened and lengthened muscles, respectively. The results suggest that chronic narrowing of the airways could induce a shift in the L-T relationship of smooth muscle, resulting in a maintained potential for maximal force production.  相似文献   

14.
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase.  相似文献   

15.
16.
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements.  相似文献   

17.
The purpose of the present study was to determine the responsiveness of airway vascular smooth muscle (AVSM) as assessed by airway mucosal blood flow (Qaw) to inhaled methoxamine (alpha(1)-agonist; 0.6-2.3 mg) and albuterol (beta(2)-agonist; 0.2-1.2 mg) in healthy [n = 11; forced expiratory volume in 1 s, 92 +/- 4 (SE) % of predicted] and asthmatic (n = 11, mean forced expiratory volume in 1 s, 81 +/- 5%) adults. Mean baseline values for Qaw were 43.8 +/- 0.7 and 54.3 +/- 0.8 microl. min(-1). ml(-1) of anatomic dead space in healthy and asthmatic subjects, respectively (P < 0.05). After methoxamine inhalation, the maximal mean change in Qaw was -13.5 +/- 1.0 microl. min(-1). ml(-1) in asthmatic and -7.1 +/- 2.1 microl. min(-1). ml(-1) in healthy subjects (P < 0.05). After albuterol, the mean maximal change in Qaw was 3.0 +/- 0.8 microl. min(-1). ml(-1) in asthmatic and 14.0 +/- 1.1 microl. min(-1). ml(-1) in healthy subjects (P < 0.05). These results demonstrate that the contractile response of AVSM to alpha(1)-adrenoceptor activation is enhanced and the dilator response of AVSM to beta(2)-adrenoceptor activation is blunted in asthmatic subjects.  相似文献   

18.
19.
20.
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease, characterized by a progressive decline in lung function. Airway smooth muscle (ASM) mass may be increased in COPD, contributing to airflow limitation and proinflammatory cytokine production. Cigarette smoke (CS), the major risk factor of COPD, causes ASM cell proliferation, as well as interleukin-8 (IL-8)-induced neutrophilia. In various cell types, transforming growth factor-β-activated kinase 1 (TAK1) plays a crucial role in MAP kinase and NF-κB activation, as well as IL-8 release induced by IL-1β, TNF-α, and lipopolysaccharide. The role of TAK1 in CS-induced IL-8 release is not known. The aim of this study was to investigate the role of TAK1 in CS-induced NF-κB and MAP kinase signaling and IL-8 release by human ASM cells. Stimulation of these cells with CS extract (CSE) increased IL-8 release and ERK-1/2 phosphorylation, as well as Iκ-Bα degradation and p65 NF-κB subunit phosphorylation. CSE-induced ERK-1/2 phosphorylation and Iκ-Bα degradation were both inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). Similarly, expression of dominant-negative TAK1 inhibited CSE-induced ERK-1/2 phosphorylation. In addition, inhibitors of TAK1 and the NF-κB (SC-514; 50 μM) and ERK-1/2 (U-0126; 3 μM) signaling inhibited the CSE-induced IL-8 release by ASM cells. These data indicate that TAK1 plays a major role in CSE-induced ERK-1/2 and NF-κB signaling and in IL-8 release by human ASM cells. Furthermore, they identify TAK1 as a novel target for the inhibition of CS-induced inflammatory responses involved in the development and progression of COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号