首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Aims To assess the impact of various fire regimes over the past 30 years on land snail communities and to analyse the role of recent landscape history and the influence of biogeography in shaping the response patterns of gastropod communities following disturbances by fire. Location South-eastern France (Provence) and Mediterranean region. Methods Stratified sampling within 12 sites was undertaken with regard to fire regime (i.e. number of fires, fire intervals and age of the last fire) occurring over the past 30 years. The study was complemented by a historical analysis using aerial photographs, old maps of vegetation cover and an analysis of the biogeographical composition of malacofaunas. Data were investigated using Correspondence Analysis and Sørensen coefficient of similarity. Results When a disturbance regime (land use or fire disturbances) has been maintained over decades or centuries, land snail communities appear highly modified and tend to be composed of only Mediterranean and xerophilous species. However, low fire regimes, since the 1970s, do not seem to greatly affect the composition of gastropod communities. Indeed, shade-loving, mesophilous and European range species persist even after successive fires within some sites. In addition, the malacofaunas have a higher component of European range species with increasing distance from the Mediterranean sea. Main conclusions Analysis of the response patterns of gastropod communities to fire shows a response to numerous different factors. The composition of current land snail communities is not only the result of (more or less) recent patterns of fire regimes but also of anthropogenic disturbances, of landscape changes over the last centuries and of subsequent structure of the pre-fire habitat, as well as of the influence of a biogeographical gradient. However, the response patterns observed and the persistence of pre-fire communities imply the presence of cryptic refuges located within burned areas.  相似文献   

2.
Abstract This opportunistic study compares the vegetation, fuel loads and vertebrate fauna of part of a 120‐ha block of tropical open forest protected from fire for 23 years, and an adjacent block burnt annually over this period. Total fuel loads did not differ significantly between the unburnt and annually burnt sites, but their composition was markedly different, with far less grassy fuel, but far more litter fuel, in the unburnt block. There were major differences between treatments in the composition of trees and shrubs, manifest particularly in the number of stems. There was no overall difference in plant species richness between the two treatments, but richness of woody species was far higher in the unburnt treatment, and of annual and perennial grasses, and perennial herbs in the annually burnt treatment. Change in plant species composition from annually burnt to unburnt treatment was directional, in that there was a far higher representation of rainforest‐associated species (with the percentage of woody stems attributable to ‘rainforest’ species increasing from 24% of all species in the annually burnt treatment to 43% in the unburnt treatment, that of basal area from 9% to 30%, that of species richness from 8% to 17%, and that of cover from 12 to 47%). The vertebrate species composition varied significantly between treatments, but there was relatively little difference in species richness (other than for a slightly richer reptile fauna in the unburnt treatment). Again, there was a tendency for species that were more common in the unburnt treatment to be rainforest‐associated species. The results from this study suggest that there is a sizeable and distinct set of species that are associated with relatively long‐unburnt environments, and hence that are strongly disadvantaged under contemporary fire regimes. We suggest that such species need to be better accommodated by fire management through strategic reductions in the frequency of burning.  相似文献   

3.
Abstract. We explore patterns of diversity of plant functional types (PFTs) in Mediterranean communities subjected to landscape‐scale fire disturbances in a mosaic of uncultivated and old fields stands. We use regenerative and growth form attributes to establish two sets of PFTs of perennial species living in shrublands and pine forests of NE Spain. We test the following hypotheses: 1. Fire frequency decreases regenerative PFTs diversity by negatively selecting attributes with low regenerative efficiency. 2. Fire history has more influence on regenerative than on growth form PFTs. 3. The lowest diversity of growth form PFTs will be in old fields without recent fires. We surveyed stands of different combinations of fire and land use histories. Fire history included areas without fires in the last twenty years (unburned), sites burned in 1982 (1‐burned), and sites burned in 1982 and 1994 (2‐burned). Land use histories considered terraced old fields, and uncultivated stands on stony soils. We analysed patterns of PFT abundance and diversity at the stand level, and across the landscape (among stands absolute deviations from sample medians of the relative cover of PFTs). At the stand level, fire had more influence on the diversity patterns of regenerative PFTs than on growth form PFTs. Fire decreased the diversity of regenerative PFTs, due to the elimination of the species without effective mechanisms to post‐fire regeneration. This effect was not observed across the landscape, but seeders showed more variation in stands with longer history without fire. Land use contributed to explain the diversity patterns of growth form PFT (i.e. the number of growth form PFTs was lower in uncultivated, unburned sites), but it did not influence regenerative PFTs diversity. Patterns of PFTs diversity reflect the response to ecological processes operating at the landscape level. Overall, regenerative and growth form PFTs appear to be more sensitive to the fire history than to the past land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号