共查询到20条相似文献,搜索用时 11 毫秒
1.
Olga Antsiferova Anne Müller Patrick C. R?mer Obinna Chijioke Bithi Chatterjee Ana Raykova Raquel Planas Mireia Sospedra Anatoliy Shumilov Ming-Han Tsai Henri-Jacques Delecluse Christian Münz 《PLoS pathogens》2014,10(8)
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development. 相似文献
2.
Jason D. Barbour Lishomwa C. Ndhlovu Qi Xuan Tan Terence Ho Lorrie Epling Barry M. Bredt Jay A. Levy Frederick M. Hecht Elizabeth Sinclair 《PloS one》2009,4(2)
Background
The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.Methodology/Principal Findings
We performed a longitudinal study simultaneously measuring T cell activation and maturation markers on both total and antigen-specific T cells in recently infected adults: prior to treatment; after the initiation of HAART; and after treatment was halted. Prior to treatment, HIV-1 Gag–specific CD8+ T cells were predominantly of a highly activated, intermediate memory (CD27+CD28−) phenotype, while CMV pp65-specific CD8+ T cells showed a late memory (CD27−CD28−), low activation phenotype. Participants with the highest fraction of late memory (CD27−CD28−) HIV-1-specific CD8+ T cells had higher CD4+ T cell counts (rho = +0.74, p = 0.004). In turn, those with the highest fraction of intermediate memory (CD27+ CD28−) HIV-1 specific CD8+ T cells had high total CD8+ T cell activation (rho = +0.68, p = 0.01), indicating poorer long-term clinical outcomes. The HIV-1 specific T cell differentiation profile was not readily altered by suppression of T cell activation following HAART treatment.Conclusions/Significance
A more differentiated, less activated HIV-1 specific CD8+ T cell response may be clinically protective. Anti-retroviral treatment initiated two to four months after infection lowered T cell activation but had no effect on the differentiation profile of the HIV-1-specific response. Intervention during the first month of acute infection may be required to shift the differentiation phenotype of HIV-1 specific responses to a more clinically favorable profile. 相似文献3.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation. 相似文献
4.
Leslie R. Cockerham Janet D. Siliciano Elizabeth Sinclair Una O'Doherty Sarah Palmer Steven A. Yukl Matt C. Strain Nicolas Chomont Frederick M. Hecht Robert F. Siliciano Douglas D. Richman Steven G. Deeks 《PloS one》2014,9(10)
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies. 相似文献
5.
Cécile Le Saout Marine Villard Clémence Cabasse Chantal Jacquet Naomi Taylor Javier Hernandez 《PloS one》2010,5(9)
Background
Lymphopenia results in the proliferation and differentiation of naïve T cells into memory-like cells in the apparent absence of antigenic stimulation. This response, at least in part due to a greater availability of cytokines, is thought to promote anti-self responses. Although potentially autoreactive memory-like CD8+ T cells generated in a lymphopenic environment are subject to the mechanisms of peripheral tolerance, they can induce autoimmunity in the presence of antigen-specific memory-like CD4+ T helper cells.Methodology/Principal Findings
Here, we studied the mechanisms underlying CD4 help under lymphopenic conditions in transgenic mice expressing a model antigen in the beta cells of the pancreas. Surprisingly, we found that the self-reactivity mediated by the cooperation of memory-like CD8+ and CD4+ T cells was not abrogated by CD40L blockade. In contrast, treatment with anti-IL-2 antibodies inhibited the onset of autoimmunity. IL-2 neutralization prevented the CD4-mediated differentiation of memory-like CD8+ T cells into pathogenic effectors in response to self-antigen cross-presentation. Furthermore, in the absence of helper cells, induction of IL-2 signaling by an IL-2 immune complex was sufficient to promote memory-like CD8+ T cell self-reactivity.Conclusions/Significance
IL-2 mediates the cooperation of memory-like CD4+ and CD8+ T cells in the breakdown of cross-tolerance, resulting in effector cytotoxic T lymphocyte differentiation and the induction of autoimmune disease. 相似文献6.
Peter Braendstrup Bo Kok Mortensen Sune Justesen Thomas ?sterby Michael Rasmussen Andreas Martin Hansen Claus Bohn Christiansen Morten Bagge Hansen Morten Nielsen Lars Vindel?v S?ren Buus Anette Stryhn 《PloS one》2014,9(4)
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy. 相似文献
7.
Co-Infection with Mycobacterium tuberculosis Impairs HIV-Specific CD8+ and CD4+ T Cell Functionality
Shivan Chetty Pamla Govender Jennifer Zupkosky Mona Pillay Musie Ghebremichael Mahomed-Yunus S. Moosa Thumbi Ndung’u Filippos Porichis Victoria O. Kasprowicz 《PloS one》2015,10(3)
The ability of antigen-specific T cells to simultaneously produce multiple cytokines is thought to correlate with the functional capacity and efficacy of T cells. These ‘polyfunctional’ T cells have been associated with control of HIV. We aimed to assess the impact of co-infection with Mycobacterium tuberculosis (MTB) on HIV-specific CD8+ and CD4+ T cell function. We assessed T cell functionality in 34 South African adults by investigating the IFN-y, IL-2, TNF-α, IL-21 and IL-17 cytokine secretion capacity, using polychromatic flow cytometry, following HIV Gag-specific stimulation of peripheral blood mononuclear cells. We show that MTB is associated with lower HIV-specific T cell function in co-infected as compared to HIV mono-infected individuals. This decline in function was greatest in co-infection with active Tuberculosis (TB) compared to co-infection with latent MTB (LTBI), suggesting that mycobacterial load may contribute to this loss of function. The described impact of MTB on HIV-specific T cell function may be a mechanism for increased HIV disease progression in co-infected subjects as functionally impaired T cells may be less able to control HIV. 相似文献
8.
Catalina MD Sullivan JL Brody RM Luzuriaga K 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(8):4184-4191
High frequencies of EBV-specific CD8(+) T cells have been detected during acute EBV infection, yet persistent infection inevitably results. To address this issue, we characterized the phenotype and function of epitope-specific CD8(+) T cell populations from presentation with acute through latent infection. Considerable phenotypic and functional heterogeneity within, as well as between, two different epitope-specific populations was observed over time following acute infection. B7 EBV-encoded nuclear Ag (EBNA)-3A-specific CD8(+) T cells expressed only CD45RO from acute through latent EBV infection. A2 BMLF-1-specific CD8(+) T cells expressed CD45RO during acute infection and either CD45RA or CD45RO during latent EBV infection. This difference in CD45 isoform expression between the two epitope-specific populations did not translate into differences in perforin content, the ability to produce IFN-gamma, or the ability to proliferate in response to Ag in vitro. In individuals with latent EBV infection, the frequencies of A2 BMLF-1- or B7 EBNA-3A-specific CD8(+) T cells that expressed CD45RA, CD45RO, CD62 ligand, CCR7, and perforin were stable over time. However, the expression of CD62 ligand and CCR7 was significantly higher among EBNA-3A-specific CD8(+) T cells than among BMLF-1-specific CD8(+) T cells. Further work is necessary to understand how phenotypic and functional differences between EBV epitope-specific CD8(+) T cells are related to the biology of the virus and to the equilibrium between the virus and the host during persistent infection. 相似文献
9.
10.
11.
Roland Tschismarov Sonja Firner Cristina Gil-Cruz Lisa G?schl Nicole Boucheron Günter Steiner Patrick Matthias Christian Seiser Burkhard Ludewig Wilfried Ellmeier 《PloS one》2014,9(10)
Reversible lysine acetylation plays an important role in the regulation of T cell responses. HDAC1 has been shown to control peripheral T helper cells, however the role of HDAC1 in CD8+ T cell function remains elusive. By using conditional gene targeting approaches, we show that LckCre-mediated deletion of HDAC1 led to reduced numbers of thymocytes as well as peripheral T cells, and to an increased fraction of CD8+CD4– cells within the CD3/TCRβlo population, indicating that HDAC1 is essential for the efficient progression of immature CD8+CD4– cells to the DP stage. Moreover, CD44hi effector CD8+ T cells were enhanced in mice with a T cell-specific deletion of HDAC1 under homeostatic conditions and HDAC1-deficient CD44hi CD8+ T cells produced more IFNγ upon ex vivo PMA/ionomycin stimulation in comparison to wild-type cells. Naïve (CD44l°CD62L+) HDAC1-null CD8+ T cells displayed a normal proliferative response, produced similar amounts of IL-2 and TNFα, slightly enhanced amounts of IFNγ, and their in vivo cytotoxicity was normal in the absence of HDAC1. However, T cell-specific loss of HDAC1 led to a reduced anti-viral CD8+ T cell response upon LCMV infection and impaired expansion of virus-specific CD8+ T cells. Taken together, our data indicate that HDAC1 is required for the efficient generation of thymocytes and peripheral T cells, for proper CD8+ T cell homeostasis and for an efficient in vivo expansion and activation of CD8+ T cells in response to LCMV infection. 相似文献
12.
Analysis of Th1 and Th2 cells in murine gut-associated tissues. Frequencies of CD4+ and CD8+ T cells that secrete IFN-gamma and IL-5 总被引:12,自引:0,他引:12
T Taguchi J R McGhee R L Coffman K W Beagley J H Eldridge K Takatsu H Kiyono 《Journal of immunology (Baltimore, Md. : 1950)》1990,145(1):68-77
After Ag and/or mitogen stimulation, cloned mouse Th1 and Th2 cells produce different cytokines that contribute to induction of particular B cell isotype responses. In this regard, IL-5 produced by Th2 cells has been shown to enhance IgA synthesis in LPS-triggered splenic (SP) B cell or in unstimulated Peyer's patch (PP) B cell cultures. This raises the possibility that Th2 cells may occur in higher frequency in gut-associated tissues, because B cells in these areas are committed to IgA synthesis. We have used an ELISPOT assay to detect individual T cells producing IFN-gamma or IL-5. For the IL-5 assay, the mAb TRFK-5 and biotinylated TRFK-4 were used in coating and detection, respectively, whereas the mAb R4-6A2 and biotinylated XMG 1.2 were similarly used for enumeration of IFN-gamma-specific spot forming cells (SFC). Specificity of each assay was tested by using Con A-activated, cloned Th1 (H66-61) or Th2 (CDC-25) cells, where the Th1 cells only produced IFN-gamma SFC and the Th2 cells only gave IL-5-specific spots. Further, preincubation of biotinylated TRFK-4 or XMG 1.2 with rIL-5 or IFN-gamma, respectively, abrogated the formation of specific spots when tested with Con A-activated SP CD4+ T cells. Both IFN-gamma and IL-5 were produced de novo, because treatment of T cells with cycloheximide inhibited both IFN-gamma and IL-5 SFC. We have assessed the numbers of T cells spontaneously secreting these cytokines in PP and in lamina propria and intraepithelial lymphocyte (LPL and IEL) populations. Moderate levels of IL-5 SFC occurred in the IEL subset, whereas higher levels existed in the LPL population. Although significant numbers of IFN-gamma SFC (Th1-type) were also seen in LPLs, the frequency of IL-5 SFC was always higher (Th1:Th2 in LPL = 1:3). In IELs, equal numbers of IFN-gamma and IL-5 SFC were seen. Interestingly, CD8+ IEL T cells produced these two cytokines. In contrast, T cells freshly isolated from PP, an IgA inductive site, contained smaller numbers of IL-5- or IFN-gamma-secreting cells and SP T cells had essentially no SFC. When PP or SP T cells were stimulated with Con A, significant and approximately equal numbers of IFN-gamma- and IL-5-producing cells appeared.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
LFA-1 regulates T cell activation and signal transduction through the immunological synapse. T cell receptor (TCR) stimulation rapidly activates LFA-1, which provides unique LFA-1-dependent signals to promote T cell activation. However, the detailed molecular pathways that regulate these processes and the precise mechanism by which LFA-1 contributes to TCR activation remain unclear. We found LFA-1 directly participates in Erk1/2 signaling upon TCR stimulation in CD8+ T cells. The presence of LFA-1, not ligand binding, is required for the TCR-mediated Erk1/2 signal pathway. LFA-1-deficient T cells have defects in sustained Erk1/2 signaling and TCR/CD3 clustering, which subsequently prevents MTOC reorientation, cell cycle progression, and mitosis. LFA-1 regulates the TCR-mediated Erk1/2 signal pathway in the context of immunological synapse for recruitment and amplification of the Erk1/2 signal. In addition, LFA-1 ligation with ICAM-1 generates an additional Erk1/2 signal, which synergizes with the existing TCR-mediated Erk1/2 signal to enhance T cell activation. Thus, LFA-1 contributes to CD8+ T cell activation through two distinct signal pathways. We demonstrated that the function of LFA-1 is to enhance TCR signaling through the immunological synapse and deliver distinct signals in CD8+ T cell activation.Leukocyte function-associated antigen-1 (LFA-1)2 plays an important role in regulating leukocyte adhesion and T cell activation (1, 2). LFA-1 consists of the αL (CD11a) and β2 (CD18) subunits. The ligands for LFA-1 include intercellular adhesion molecular-1 (ICAM-1), ICAM-2, and ICAM-3 (3). LFA-1 participates in the formation of the immunological synapse, which regulates T cell activation synergistically with TCR engagement. The immunological synapse is a specialized structure that forms between the T cell and the APC or target cell (1, 2, 4). The function of the immunological synapse is to facilitate T cell activation and signal transduction. Mice deficient in LFA-1 (CD11a KO) have defects in leukocyte adhesion, lymphocyte proliferation, and tumor rejection (5–7).Upon TCR stimulation, the nascent immunological synapse is initiated with surface receptor clustering and cytoskeleton rearrangement, then followed by mature synapse formation after prolonged stimulation (8, 9). In the mature immunological synapse, LFA-1 forms a ring-like pattern at the peripheral supramolecular activation cluster (pSMAC), which surrounds the central supramolecular activation cluster (cSMAC) containing TCR/CD3/lipid rafts (10, 11). The structure of the mature synapse is stable for hours and thought to be important for sustained TCR signaling (12–14). LFA-1 functions via pSMAC to stabilize the cSMAC and is associated with the induction of T cell proliferation, cytokine production, and lytic granule migration toward cSMAC (1, 15). Although LFA-1-containing pSMAC is self-evident in lipid bilayer systems and cell lines, whether it is required for T cell activation under physiological conditions remains controversial (15).TCR stimulation rapidly induces the functional activity of LFA-1, which then provides unique LFA-1-dependent signals to promote T cell activation (16). The process can be divided into two steps. First, the intracellular signaling from TCR regulating LFA-1 activation is known as “inside-out” signaling; second, activated LFA-1, as a signaling receptor, can feedback to transduce the intracellular signal, the “outside-in” signaling (1, 17). It is widely accepted that TCR stimulation activates LFA-1 through affinity and/or avidity regulation, as supported by increased adhesion to ICAM-1 and pSMAC formation (16, 17). The “inside-out” signal process has been investigated extensively (18–21). The TCR proximal signal molecules, Lck, ZAP-70, and PI3K, are known to be important for TCR signaling to LFA-1 activation (22–26). The molecular mechanisms of LFA-1 “outside-in” signaling have been explored only recently. Perez et al. (27) have demonstrated that LFA-1 and ICAM-1 ligation activates the downstream Erk1/2 MAPK signaling pathway upon TCR stimulation, which ultimately leads to the qualitative modulation of CD4+ T cell activation through distinct LFA-1-dependent signals. Another recent study provided compelling evidence that LFA-1 reshapes the Ras MAPK pathway downstream of TCR (28). However, the detailed molecular pathways that regulate these processes are poorly defined. Especially, the evidence in support of a distinctive role for LFA-1 in the T cell signaling pathway has lagged behind; whether the function of LFA-1 is to enhance TCR signaling through the immunological synapse and/or deliver distinct signal in T cell activation and whether LFA-1 is indispensable for or merely assists the existing TCR signal pathway. Furthermore, whether and how TCR proximal signal molecules regulate LFA-1 function remains unknown. Further studies are required to understand the LFA-1 and TCR signaling network.In this study, we found that LFA-1 directly participates in CD8+ T cell activation. Upon TCR stimulation, LFA-1 regulates both TCR-mediated and LFA-1-mediated Erk1/2 signal pathways. First, the presence of LFA-1, not ligand binding, is required for the sustained Erk1/2 signaling and TCR/CD3 clustering on the surface of CD8+ T cells, subsequently leading to MTOC reorientation, cell cycle progression, and mitosis. Second, LFA-1 ligation with ICAM-1 enhances Erk1/2 signaling, which promotes T cell activation with increased IL-2 production and cell proliferation. This LFA-1-mediated Erk1/2 signal pathway integrates with the existing TCR-mediated Erk1/2 signal pathway to enhance T cell activation. 相似文献
14.
15.
Jang Eun Lee Matthew C. Walsh Kyle L. Hoehn David E. James E. John Wherry Yongwon Choi 《PloS one》2015,10(9)
Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2) regulates fatty acid oxidation (FAO) by inhibiting carnitine palmitoyltransferase 1 (CPT1), a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses. 相似文献
16.
Arta M. Monjazeb Julia K. Tietze Steven K. Grossenbacher Hui-Hua Hsiao Anthony E. Zamora Annie Mirsoian Brent Koehn Bruce R. Blazar Jonathan M. Weiss Robert H. Wiltrout Gail D. Sckisel William J. Murphy 《PloS one》2014,9(8)
We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25−NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion. 相似文献
17.
To generate therapeutic T cells for adoptive immunotherapy, T cells specific to Epstein-Barr virus LMP2A were enriched on the basis of antigen-specific production of interferon-gamma (IFNgamma). The enriched T cells, contained over 60% LMP2A-specific effectors, were polyclonal and targeted multiple LMP2A epitopes. A high proportion of the enriched T cells produced the Th1 cytokines interleukin (IL)-2 and granulocyte monocyte colony stimulating factor, while few cells expressed the Th2 cytokines IL4 and IL10. The enriched T cells specifically lysed LMP2A-expressing target cells, with concomitant production of IFNgamma and surface expression of CD107, suggesting the involvement of the granule exocytosis-mediated cytolytic pathway. In addition, the enriched T cells expressed CD45RO, CD28 and CD27, but not CD45RA, consistent with a differentiation stage capable of self-renewal for long-term persistence. LMP2A-specific T cells enriched based on IFNgamma-production may provide improved efficacy for the treatment of Epstein-Barr virus related malignancy. 相似文献
18.
19.
Immunodominance is a common phenomenon observed in multiple epitopes immune systems. Previous studies hypothesize that the competition among CD8+ T cell responses against different epitopes can be used to explain immunodominance. This paper proposes a mathematical model that describes the dynamics of CD8+ T cells primed by antigen-presenting dendritic cells (DCs) in the lymph nodes, and shows that the overall avidity of the interactions between peptide-specific T cells and cognate antigen-bearing DCs may determine the immunodominance. The model suggests the probability that a peptide-specific T cell be immunodominant is proportional to (1) the cognate T cell receptor (TCR) affinity, (2) the number of complexes of cognate peptide and major histocompatibility complex (pMHC) per DC, and (3) the half-life of cognate peptide-specific pMHC. The model predicts a threshold density of pMHC complexes for T cell activation. These observations from the mathematical model are consistent with experimental studies in the open literature. For DC-based vaccine design, the model suggests a strategy of immunotherapy based on the injection of cognate antigen-pulsed DCs. 相似文献
20.
Chiara Rancan Leah Schirrmann Corinna Hüls Reinhard Zeidler Andreas Moosmann 《PLoS pathogens》2015,11(6)
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms. 相似文献