首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Pulmonary arterial hypertension is a progressive disease that is characterized by dyspnea and exercise intolerance. Impairment in skeletal muscle has recently been described in PAH, although the degree to which this impairment is solely determined by the hemodynamic profile remains uncertain. The aim of this study was to verify the association of structural and functional skeletal muscle characteristics with maximum exercise in PAH.

Methods

The exercise capacity, body composition, CT area of limb muscle, quality of life, quadriceps biopsy and hemodynamics of 16 PAH patients were compared with those of 10 controls.

Results

PAH patients had a significantly poorer quality of life, reduced percentage of lean body mass, reduced respiratory muscle strength, reduced resistance and strength of quadriceps and increased functional limitation at 6MWT and CPET. VO2 max was correlated with muscular variables and cardiac output. Bivariate linear regression models showed that the association between muscular structural and functional variables remained significant even after correcting for cardiac output.

Conclusion

Our study showed the coexistence of ventilatory and quadriceps weakness in face of exercise intolerance in the same group of PAH patients. More interestingly, it is the first time that the independent association between muscular pattern and maximum exercise capacity is evidenced in PAH, independently of cardiac index highlighting the importance of considering rehabilitation in the treatment strategy for PAH.  相似文献   

3.
4.
5.
6.
Prader-Willi Syndrome (PWS), a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR), including a set of small non-translated nucleolar RNA’s (snoRNA). Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health and disease.  相似文献   

7.

Objective

MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.

Approach and Results

After lethally irradiated, LDLR−/− mice were transplanted with bone marrow cells from either wild-type or MCPIP1−/− mice. These chimeric mice were fed a western-type diet for 7 weeks. We found that bone marrow MCPIP1−/− mice displayed a phenotype similar to that of whole body MCPIP1−/− mice, with severe systemic and multi-organ inflammation. However, MCPIP1−/− bone marrow recipients developed >10-fold less atherosclerotic lesions in the proximal aorta than WT bone marrow recipients, and essentially no lesions in en face aorta. The diminishment in atherosclerosis in bone marrow MCPIP1−/− mice may be partially attributed to the slight decrease in their plasma lipids. Flow cytometric analysis of splenocytes showed that bone marrow MCPIP1−/− mice contained reduced numbers of T cells and B cells, but increased numbers of regulatory T cells, Th17 cells, CD11b+/Gr1+ cells and CD11b+/Ly6Clow cells. This overall anti-atherogenic leukocyte profile may also contribute to the reduced atherogenesis. We also examined the cholesterol efflux capability of MCPIP1 deficient macrophages, and found that MCPIP1deficiency increased cholesterol efflux to apoAI and HDL, due to increased protein levels of ABCA1 and ABCG1.

Conclusions

Hematopoietic deficiency of MCPIP1 resulted in severe systemic and multi-organ inflammation but paradoxically diminished atherogenesis in mice. The reduced atheroegensis may be explained by the decreased plasma cholesterol levels, the anti-atherogenic leukocyte profile, as well as enhanced cholesterol efflux capability. This study suggests that, while atherosclerosis is a chronic inflammatory disease, the mechanisms underlying atherogenesis-associated inflammation in arterial wall versus the inflammation in solid organs may be substantially different.  相似文献   

8.
Calpains are Ca2+-dependent modulator Cys proteases that have a variety of functions in almost all eukaryotes. There are more than 10 well-conserved mammalian calpains, among which eutherian calpain-6 (CAPN6) is unique in that it has amino acid substitutions at the active-site Cys residue (to Lys in humans), strongly suggesting a loss of proteolytic activity. CAPN6 is expressed predominantly in embryonic muscles, placenta, and several cultured cell lines. We previously reported that CAPN6 is involved in regulating microtubule dynamics and actin reorganization in cultured cells. The physiological functions of CAPN6, however, are still unclear. Here, to elucidate CAPN6''s in vivo roles, we generated Capn6-deficient mice, in which a lacZ expression cassette was integrated into the Capn6 gene. These Capn6-deficient mouse embryos expressed lacZ predominantly in skeletal muscles, as well as in cartilage and the heart. Histological and biochemical analyses showed that the CAPN6 deficiency promoted the development of embryonic skeletal muscle. In primary cultured skeletal muscle cells that were induced to differentiate into myotubes, Capn6 expression was detected in skeletal myocytes, and Capn6-deficient cultures showed increased differentiation. Furthermore, we found that CAPN6 was expressed in the regenerating skeletal muscles of adult mice after cardiotoxin-induced degeneration. In this experimental system, Capn6-deficient mice exhibited more advanced skeletal-muscle regeneration than heterozygotes or wild-type mice at the same time point. These results collectively showed that a loss of CAPN6 promotes skeletal muscle differentiation during both development and regeneration, suggesting a novel physiological function of CAPN6 as a suppressor of skeletal muscle differentiation.  相似文献   

9.
10.
In reviewing the peripheral hematologic manifestations, bone marrow changes and clinical course in 41 consecutive patients with acquired immunodeficiency syndrome (AIDS), frequent findings included anemia (95%), leukopenia (76%), bone marrow hypercellularity (73%) and pancytopenia (41%). These hematologic abnormalities were not clearly associated with specific clinical manifestations of AIDS, but support the conclusion that the hematopoietic system is a target organ in AIDS. The mechanisms of these abnormalities still need to be evaluated. Clinicians should be aware of these commonly encountered changes.  相似文献   

11.
Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice.  相似文献   

12.
13.
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.  相似文献   

14.
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.  相似文献   

15.
Zinc (Zn) deficiency during pregnancy may result in a variety of defects in the offspring. We evaluated the influence of marginal Zn deficiency during pregnancy on neonatal bone status. Nine-week-old male Sprague-Dawley rats were divided into two groups and fed AIN-93G-based experimental diets containing 35 mg Zn/kg (Zn adequately supplied, N) or 7 mg Zn/kg (low level of Zn, L) from 14-day preconception to 20 days of gestation, that is, 1 day before normal delivery. Neonates were delivered by cesarean section. Litter size and neonate weight were not different between the two groups. However, in the L-diet-fed dam group, bone matrix formation in isolated neonatal calvaria culture was clearly impaired and was not recovered by the addition of Zn into the culture media. Additionally, serum concentration of osteocalcin, as a bone formation parameter, was lower in neonates from the L-diet-fed dam group. Impaired bone mineralization was observed with a significantly lower content of phosphorus in neonate femurs from L-diet-fed dams compared with those from N-diet-fed dams. Moreover, Zn content in the femur and calvaria of neonates from the L-diet group was lower than that of the N-diet-fed group. In the marginally Zn-deficient dams, femoral Zn content, serum concentrations of Zn, and osteocalcin were reduced when compared with control dams. We conclude that maternal Zn deficiency causes impairment of bone matrix formation and bone mineralization in neonates, implying the importance of Zn intake during pregnancy for proper bone development of offspring.  相似文献   

16.
Claudin (Cld)-4 is one of the dominant Clds expressed in the kidney and urinary tract, including selective segments of renal nephrons and the entire urothelium from the pelvis to the bladder. We generated Cldn4 −/− mice and found that these mice had increased mortality due to hydronephrosis of relatively late onset. While the renal nephrons of Cldn4 −/− mice showed a concomitant diminution of Cld8 expression at tight junction (TJ), accumulation of Cld3 at TJ was markedly enhanced in compensation and the overall TJ structure was unaffected. Nonetheless, Cldn4 −/− mice showed slightly yet significantly increased fractional excretion of Ca2+ and Cl, suggesting a role of Cld4 in the specific reabsorption of these ions via a paracellular route. Although the urine volume tended to be increased concordantly, Cldn4 −/− mice were capable of concentrating urine normally on dehydration, with no evidence of diabetes insipidus. In the urothelium, the formation of TJs and uroplaques as well as the gross barrier function were also unaffected. However, intravenous pyelography analysis indicated retarded urine flow prior to hydronephrosis. Histological examination revealed diffuse hyperplasia and a thickening of pelvic and ureteral urothelial layers with markedly increased BrdU uptake in vivo. These results suggest that progressive hydronephrosis in Cldn4 −/− mice arises from urinary tract obstruction due to urothelial hyperplasia, and that Cld4 plays an important role in maintaining the homeostatic integrity of normal urothelium.  相似文献   

17.
The s(15DttMb), s(36Pub), s(1Acrg) and s(24Pub) piebald deletion alleles belong to a set of overlapping deficiencies on the distal portion of chromosome 14. Molecular analysis was used to define the extent of the deletions. Mice homozygous for the smallest deletion, s(15DttMb), die shortly after delivery and display alterations in the central nervous system, including hydrocephalus and a dorsally restricted malformation of the spinal cord. These mice also display homeotic transformations of vertebrae in the midthoracic and lumbar regions. Homozygous s(27Pub) mice contain a point mutation in the piebald gene, survive to weaning, and display no central nervous system or skeletal defects, arguing that the s(15DttMb) phenotype results from the loss of genes in addition to piebald. A larger deletion, s(36Pub), exhibits additional cartilage malformations and defects in the anterior axial and cranial skeleton. The skeletal defects in both s(15DttMb) and s(36Pub) mice resemble transformations associated with the targeted disruption of Hox genes and genes encoding the retinoic acid receptors, which play a role in the specification of segmental identity along the anteroposterior axis. Complementation analysis of the s(15DttMb) and s(36Pub) phenotypes, using two additional deletions, localized the gene(s) associated with each phenotype to a defined chromosomal region.  相似文献   

18.
19.
The ependymal multiciliated epithelium in the brain restricts the cerebrospinal fluid to the cerebral ventricles and regulates its flow. We report here that mice deficient for myosin IXa (Myo9a), an actin-dependent motor molecule with a Rho GTPase–activating (GAP) domain, develop severe hydrocephalus with stenosis and closure of the ventral caudal 3rd ventricle and the aqueduct. Myo9a is expressed in maturing ependymal epithelial cells, and its absence leads to impaired maturation of ependymal cells. The Myo9a deficiency further resulted in a distorted ependyma due to irregular epithelial cell morphology and altered organization of intercellular junctions. Ependymal cells occasionally delaminated, forming multilayered structures that bridged the CSF-filled ventricular space. Hydrocephalus formation could be significantly attenuated by the inhibition of the Rho-effector Rho-kinase (ROCK). Administration of ROCK-inhibitor restored maturation of ependymal cells, but not the morphological distortions of the ependyma. Similarly, down-regulation of Myo9a by siRNA in Caco-2 adenocarcinoma cells increased Rho-signaling and induced alterations in differentiation, cell morphology, junction assembly, junctional signaling, and gene expression. Our results demonstrate that Myo9a is a critical regulator of Rho-dependent and -independent signaling mechanisms that guide epithelial differentiation. Moreover, Rho-kinases may represent a new target for therapeutic intervention in some forms of hydrocephalus.  相似文献   

20.
Although articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4). In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone. To study the role of Thbs4 in skeletal development and integrity we took advantage of a Thbs4-deficient mouse model that was analyzed by undecalcified bone histology. We found that Thbs4-deficient mice do not display phenotypic differences towards wildtype littermates in terms of skeletal growth or bone mass acquisition. Since Thbs4 has previously been found over-expressed in bones of Phex-deficient Hyp mice, we additionally generated Thbs4-deficient Hyp mice, but failed to detect phenotypic differences towards Hyp littermates. With respect to articular cartilage we found that Thbs4-deficient mice display transient thinning of articular cartilage, suggesting a protective role of Thbs4 for joint integrity. Gene expression analysis using porcine primary cells revealed that Thbs4 is not expressed by synovial fibroblasts and that it represents the only member of the Thbs gene family with specific expression in articular, but not in growth plate chondrocytes. In an attempt to identify specific molecular effects of Thbs4 we treated porcine articular chondrocytes with human THBS4 in the absence or presence of conditioned medium from porcine synovial fibroblasts. Here we did not observe a significant influence of THBS4 on proliferation, metabolic activity, apoptosis or gene expression, suggesting that it does not act as a signaling molecule. Taken together, our data demonstrate that Thbs4 is highly expressed in articular chondrocytes, where its presence in the extracellular matrix is required for articular cartilage integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号