首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang L  Li L  Zhang H  Luo X  Dai J  Zhou S  Gu J  Zhu J  Atadja P  Lu C  Li E  Zhao K 《The Journal of biological chemistry》2011,286(44):38725-38737
SMYD2 belongs to a subfamily of histone lysine methyltransferase and was recently identified to methylate tumor suppressor p53 and Rb. Here we report that SMYD2 prefers to methylate p53 Lys-370 over histone substrates in vitro. Consistently, the level of endogenous p53 Lys-370 monomethylation is significantly elevated when SMYD2 is overexpressed in vivo. We have solved the high resolution crystal structures of the full-length SMYD2 protein in binary complex with its cofactor S-adenosylmethionine and in ternary complex with cofactor product S-adenosylhomocysteine and p53 substrate peptide (residues 368-375), respectively. p53 peptide binds to a deep pocket of the interface between catalytic SET(1-282) and C-terminal domain (CTD) with an unprecedented U-shaped conformation. Subtle conformational change exists around the p53 binding site between the binary and ternary structures, in particular the tetratricopeptide repeat motif of the CTD. In addition, a unique EDEE motif between the loop of anti-parallel β7 and β8 sheets of the SET core not only interacts with p53 substrate but also forms a hydrogen bond network with residues from CTD. These observations suggest that the tetratricopeptide repeat and EDEE motif may play an important role in determining p53 substrate binding specificity. This is further verified by the findings that deletion of the CTD domain drastically reduces the methylation activity of SMYD2 to p53 protein. Meanwhile, mutation of EDEE residues impairs both the binding and the enzymatic activity of SMYD2 to p53 Lys-370. These data together reveal the molecular basis of SMYD2 in specifically recognizing and regulating functions of p53 tumor suppressor through Lys-370 monomethylation.  相似文献   

2.

The revelance of the epigenetic regulation of cancer led to the design and testing of many drugs targeting epigenetic modifiers. The Su(Var)3–9, Enhancer-of-zeste and Trithorax (SET) and myeloid, Nervy, and DEAF-1 (MYND) domain-containing protein 2 (SMYD2) and 3 (SMYD3) are methyltransferases which act on histone and non-histone proteins to promote tumorigenesis in many cancer types. In addition to their oncogenic roles, SMYD2 and SMYD3 are involved in many other physiopathological conditions. In this review we will focus on the advances made in the last five years in the field of pharmacology regarding drugs targeting SMYD2 (such as LLY-507 or AZ505) and SMYD3 (such as BCI-121 or EPZ031686) and their potential cellular and molecular mechanisms of action and application in anti-tumoural therapy and/or against other diseases.

  相似文献   

3.
4.
5.
6.
7.
Wu J  Cheung T  Grande C  Ferguson AD  Zhu X  Theriault K  Code E  Birr C  Keen N  Chen H 《Biochemistry》2011,50(29):6488-6497
SET and MYND domain-containing protein 2 (SMYD2) is a protein lysine methyltransferase that catalyzes the transfer of methyl groups from S-adenosylmethionine (AdoMet) to acceptor lysine residues on histones and other proteins. To understand the kinetic mechanism and the function of individual domains, human SMYD2 was overexpressed, purified, and characterized. Substrate specificity and product analysis studies established SMYD2 as a monomethyltransferase that prefers nonmethylated p53 peptide substrate. Steady-state kinetic and product inhibition studies showed that SMYD2 operates via a rapid equilibrium random Bi Bi mechanism at a rate of 0.048 ± 0.001 s(-1), with K(M)s for AdoMet and the p53 peptide of 0.031 ± 0.01 μM and 0.68 ± 0.22 μM, respectively. Metal analyses revealed that SMYD2 contains three tightly bound zinc ions that are important for maintaining the structural integrity and catalytic activity of SMYD2. Catalytic activity was also shown to be dependent on the GxG motif in the S-sequence of the split SET domain, as a G18A/G20A double mutant and a sequence deletion within the conserved motif impaired AdoMet binding and significantly decreased enzymatic activity. The functional importance of other SMYD2 domains including the MYND domain, the cysteine-rich post-SET domain, and the C-terminal domain (CTD), were also investigated. Taken together, these results demonstrated the functional importance of distinct domains in the SMYD family of proteins and further advanced our understanding of the catalytic mechanism of this family.  相似文献   

8.
Estrogen receptor (ER) signaling plays a pivotal role in many developmental processes and has been implicated in numerous diseases including cancers. We recently showed that direct ERα methylation by the multi-specificity histone lysine methyltransferase SMYD2 regulates estrogen signaling through repressing ERα-dependent transactivation. However, the mechanism controlling the specificity of the SMYD2–ERα interaction and the structural basis of SMYD2 substrate binding diversity are unknown. Here we present the crystal structure of SMYD2 in complex with a target lysine (Lys266)-containing ERα peptide. The structure reveals that ERα binds SMYD2 in a U-shaped conformation with the binding specificity determined mainly by residues C-terminal to the target lysine. The structure also reveals numerous intrapeptide contacts that ensure shape complementarity between the substrate and the active site of the enzyme, thereby likely serving as an additional structural determinant of substrate specificity. In addition, comparison of the SMYD2–ERα and SMYD2–p53 structures provides the first structural insight into the diverse nature of SMYD2 substrate recognition and suggests that the broad specificity of SMYD2 is achieved by multiple molecular mechanisms such as distinct peptide binding modes and the intrinsic dynamics of peptide ligands. Strikingly, a novel potentially SMYD2-specific polyethylene glycol binding site is identified in the CTD domain, implicating possible functions in extended substrate binding or protein–protein interactions. Our study thus provides the structural basis for the SMYD2-mediated ERα methylation, and the resulting knowledge of SMYD2 substrate specificity and target binding diversity could have important implications in selective drug design against a wide range of ERα-related diseases.  相似文献   

9.
10.
组蛋白甲基化修饰是肿瘤表观遗传学修饰异常的研究热点。这种修饰涉及肿瘤细胞的生物学行为,并参与肿瘤发生、发展和病理转归。含有SET结构域和MYND结构域蛋白的SMYD家族,是一组重要的赖氨酸甲基转移酶,主要通过组蛋白或非组蛋白甲基化修饰,调控其下游靶基因和肿瘤关键信号通路,参与肿瘤发生和发展的整个过程。SMYD家族影响肿瘤细胞的增殖、分化、凋亡、血管形成、侵袭和转移以及化疗敏感性等生物学特性。SMYD家族成员作为肿瘤新型分子诊断标志物和治疗靶点,有着巨大的临床应用价值和意义。本文综述了SMYD家族在肿瘤中的转录调控机制、生物学功能、临床研究意义及其作为分子靶点的抗肿瘤新药研究。  相似文献   

11.
SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.Subject terms: Colon cancer, Apoptosis  相似文献   

12.
13.
14.
15.
SMYD1是组蛋白甲基转移酶,在骨骼肌和心肌中特异表达,是调节心肌和骨骼肌发育的关键因子.虽然SMYD1的生物学功能比较清楚,但细胞外因子调节SMYD1基因表达的机制还没有报导.IGF-1能促进心肌和骨骼肌的发育、加速肌肉的损伤修复过程.通过Western印迹发现,在用IGF-1处理的C2C12细胞中,SMYD1的表达水平随处理时间逐步升高,SRF蛋白和Myogenin的表达也呈现类似的趋势.通过构建不同长度的SMYD1基因启动子荧光素酶报告基因载体,发现SMYD1基因启动子上IGF-1的应答区域位于-620~-110 bp;EMSA实验表明,SRF结合在SMYD1启动子的CArG位点,而IGF-1则能促进SRF与SMYD1启动子的结合;若将启动子上的CArG元件突变,IGF-1对SMYD1启动子的激活效应被削弱.可见IGF-1能够上调SMYD1在C2C12细胞中的表达,并且这种调控作用是部分通过调节SRF与SMYD1启动子上CArG位点的结合而实现的.此外,通过荧光素酶报告基因分析,发现SMYD1能够激活肌肉标志因子肌肉肌酸激酶(MCK)基因活性,而且与MyoD基因存在协同激活效应.因此,SMYD1可能是IGF-1的下游靶基因,SMYD1可能通过与MyoD协同作用,促进肌肉的分化。  相似文献   

16.
17.
DNA damage promotes the activation of a signal transduction cascade referred to as the DNA damage checkpoint. This pathway initiates with the Mec1/ATR kinase, which then phosphorylates the Rad53/Chk2 kinase. Mec1 phosphorylation of Rad53 is then thought to promote Rad53 autophosphorylation, ultimately leading to a fully active Rad53 molecule that can go on to phosphorylate substrates important for DNA damage resistance. In the absence of DNA repair, this checkpoint is eventually downregulated in a Cdc5-dependent process referred to as checkpoint adaptation. Recently, we showed that overexpression of Cdc5 leads to checkpoint inactivation and loss of the strong electrophoretic shift associated with Rad53 inactivation. Interestingly, this same overexpression did not strongly inhibit Rad53 autophosphorylation activity as measured by the in situ assay (ISA). The ISA involves incubating the re-natured Rad53 protein with γ 32P labeled ATP after electrophoresis and western blotting. Using a newly identified Rad53 target, we show that despite strong ISA activity, Rad53 does not maintain phosphorylation of this substrate. We hypothesize that, during adaptation, Rad53 may be in a unique state in which it maintains some Mec1 phosphorylation but does not have the auto-phosphorylations required for full activity towards exogenous substrates.Key words: DNA damage, checkpoint, adaptation, CDC5, RAD53, ISA  相似文献   

18.
The SET8 histone lysine methyltransferase, which monomethylates the histone 4 lysine 20 residue plays important roles in cell cycle control and genomic stability. By employing peptide arrays we have shown that it has a long recognition sequence motif covering seven amino acid residues, viz. R17–H18–(R19KY)–K20–(V21ILFY)–(L22FY)–R23. Celluspots peptide array methylation studies confirmed specific monomethylation of H4K20 and revealed that the symmetric and asymmetric methylation on R17 of the H4 tail inhibits methylation on H4K20. Similarly, dimethylation of the R located at the −3 position also reduced methylation of p53 K382 which had been shown previously to be methylated by SET8. Based on the derived specificity profile, we identified 4 potential non-histone substrate proteins. After relaxing the specificity profile, we identified several more candidate substrates and showed efficient methylation of 20 novel non-histone peptides by SET8. However, apart from H4 and p53 none of the identified novel peptide targets was methylated at the protein level. Since H4 and p53 both contain the target lysine in an unstructured part of the protein, we conclude that the long recognition sequence of SET8 makes it difficult to methylate a lysine in a folded region of a protein, because amino acid side chains essential for recognition will be buried.  相似文献   

19.
20.
Dnmt2 is the most strongly conserved cytosine DNA methyltransferase in eukaryotes. It has been found in all organisms possessing methyltransferases of the Dnmt1 and Dnmt3 families, whereas in many others Dnmt2 is the sole cytosine DNA methyltransferase. The Dnmt2 molecule contains all conserved motifs of cytosine DNA methyltransferases. It forms 3D complexes with DNA very similar to those of bacterial DNA methyltransferases and performs cytosine methylation by a catalytic mechanism common to all cytosine DNA methyltransferases. Catalytic activity of the purified Dnmt2 with DNA substrates is very low and could hardly be detected in direct biochemical assays. Dnmt2 is the sole cytosine DNA methyltransferase in Drosophila and other dipteran insects. Its overexpression as a transgene leads to DNA hypermethylation in all sequence contexts and to an extended life span. On the contrary, a null-mutation of the Dnmt2 gene leads to a diminished life span, though no evident anomalies in development are observed. Dnmt2 is also the sole cytosine DNA methyltransferase in several protists. Similar to Drosophila these protists have a very low level of DNA methylation. Some limited genome compartments, such as transposable sequences, are probably the methylation targets in these organisms. Dnmt2 does not participate in genome methylation in mammals, but seems to be an RNA methyltransferase modifying the 38th cytosine residue in anticodon loop of certain tRNAs. This modification enhances stability of tRNAs, especially in stressful conditions. Dnmt2 is the only enzyme known to perform RNA methylation by a catalytic mechanism characteristic of DNA methyltransferases. The Dnmt2 activity has been shown in mice to be necessary for paramutation establishment, though the precise mechanisms of its participation in this form of epigenetic heredity are unknown. It seems likely, that either of the two Dnmt2 activities could become a predominant one during the evolution of different species. The high level of the Dnmt2 evolutionary conservation proves its activity to have a significant adaptive value in natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号