首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.Subject terms: Extracellular signalling molecules, Rheumatoid arthritis  相似文献   

2.
To probe the role of protein arginine methyltransferase 5 (PRMT5) in regulating inflammation, cell proliferation, migration and invasion of fibroblast‐like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). FLSs were separated from synovial tissues (STs) from patients with RA and osteoarthritis (OA). An inhibitor of PRMT5 (EPZ015666) and short interference RNA (siRNA) against PRMT5 were used to inhibit PRMT5 expression. The standard of protein was measured by Western blot or immunofluorescence. The excretion and genetic expression of inflammatory factors were, respectively, estimated by enzyme‐linked immunosorbent assay (ELISA) and real‐time polymerase chain reaction (PCR). Migration and invasion in vitro were detected by Boyden chamber assay. FLSs proliferation was detected by BrdU incorporation. Increased PRMT5 was discovered in STs and FLSs from patients with RA. In RA FLSs, the level of PRMT5 was up‐regulated by stimulation with IL‐1β and TNF‐α. Inhibition of PRMT5 by EPZ015666 and siRNA‐mediated knockdown reduced IL‐6 and IL‐8 production, and proliferation of RA FLSs. In addition, inhibition of PRMT5 decreased in vitro migration and invasion of RA FLSs. Furthermore, EPZ015666 restrained the phosphorylation of IκB kinaseβ and IκBα, as well as nucleus transsituation of p65 as well as AKT in FLSs. PRMT5 regulated the production of inflammatory factors, cell proliferation, migration and invasion of RA FLS, which was mediated by the NF‐κB and AKT pathways. Our data suggested that targeting PRMT5 to prevent synovial inflammation and destruction might be a promising therapy for RA.  相似文献   

3.

Introduction

Lysophosphatidic acid (LPA) is a bioactive lipid that binds to G protein–coupled receptors (LPA1–6). Recently, we reported that abrogation of LPA receptor 1 (LPA1) ameliorated murine collagen-induced arthritis, probably via inhibition of inflammatory cell migration, Th17 differentiation and osteoclastogenesis. In this study, we examined the importance of the LPA–LPA1 axis in cell proliferation, cytokine/chemokine production and lymphocyte transmigration in fibroblast-like synoviocytes (FLSs) obtained from the synovial tissues of rheumatoid arthritis (RA) patients.

Methods

FLSs were prepared from synovial tissues of RA patients. Expression of LPA1–6 was examined by quantitative real-time RT-PCR. Cell surface LPA1 expression was analyzed by flow cytometry. Cell proliferation was analyzed using a cell-counting kit. Production of interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), metalloproteinase 3 (MMP-3) and chemokine (C-X-C motif) ligand 12 (CXCL12) was measured by enzyme-linked immunosorbent assay. Pseudoemperipolesis was evaluated using a coculture of RA FLSs and T or B cells. Cell motility was examined by scrape motility assay. Expression of adhesion molecules was determined by flow cytometry.

Results

The expression of LPA1 mRNA and cell surface LPA1 was higher in RA FLSs than in FLSs from osteoarthritis tissue. Stimulation with LPA enhanced the proliferation of RA FLSs and the production of IL-6, VEGF, CCL2 and MMP-3 by FLSs, which were suppressed by an LPA1 inhibitor (LA-01). Ki16425, another LPA1 antagonist, also suppressed IL-6 production by LPA-stimulated RA FLSs. However, the production of CXCL12 was not altered by stimulation with LPA. LPA induced the pseudoemperipolesis of T and B cells cocultured with RA FLSs, which was suppressed by LPA1 inhibition. In addition, LPA enhanced the migration of RA FLSs and expression of vascular cell adhesion molecule and intercellular adhesion molecule on RA FLSs, which were also inhibited by an LPA1 antagonist.

Conclusions

Collectively, these results indicate that LPA–LPA1 signaling contributes to the activation of RA FLSs.  相似文献   

4.

Introduction

Rheumatoid arthritis (RA) is characterized by synovial lining hyperplasia, in which there may be an imbalance between the growth and death of fibroblast-like synoviocytes (FLSs). Antibodies against citrullinated proteins are proposed to induce RA. This study aimed to investigate the pathogenic role of citrullinated fibronectin (cFn) in RA.

Methods

The distribution of fibronectin (Fn) and cFn in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical and double immunofluorescence analysis. FLSs were isolated from RA and OA patients and treated with Fn or cFn. Apoptosis was detected by flow cytometry and TUNEL assay. The expression of survivin, caspase-3, cyclin-B1, Bcl-2 and Bax was detected by real-time PCR. The secretion of proinflammatory cytokines was measured by ELISA.

Results

Fn formed extracellular aggregates that were specifically citrullinated in synovial tissues of RA patients, but no Fn deposits were observed in those of OA patients. Fn induced the apoptosis of RA and OA FLSs while cFn inhibited the apoptosis of RA and OA FLSs. Fn significantly increased the expression of caspase-3 and decreased the expression of survivin and cyclin-B1 in FLSs from RA and OA patients. cFn significantly increased the expression of survivin in RA FLSs. Furthermore, cFn increased the secretion of TNF-α and IL-1 by FLSs.

Conclusions

cFn plays a potential pathophysiologic role in RA by inhibiting apoptosis and increasing proinflammatory cytokine secretion of FLSs.  相似文献   

5.
The healthy synovial lining layer consists of a single cell layer that regulates the transport between the joint cavity and the surrounding tissue. It has been suggested that abnormalities such as somatic mutations in the p53 tumor-suppressor gene contribute to synovial hyperplasia and invasion in rheumatoid arthritis (RA). In this study, expression of epithelial markers on healthy and diseased synovial lining tissue was examined. In addition, we investigated whether a regulated process, resembling epithelial to mesenchymal transition (EMT)/fibrosis, could be responsible for the altered phenotype of the synovial lining layer in RA. Synovial tissue from healthy subjects and RA patients was obtained during arthroscopy. To detect signs of EMT, expression of E-cadherin (epithelial marker), collagen type IV (indicator of the presence of a basement membrane) and alpha-smooth muscle actin (alpha-sma; a myofibroblast marker) was investigated on frozen tissue sections using immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from healthy subjects were isolated and subjected to stimulation with synovial fluid (SF) from two RA patients and to transforming growth factor (TGF)-beta. To detect whether EMT/fibrotic markers were increased, expression of collagen type I, alpha-sma and telopeptide lysylhydroxylase (TLH) was measured by real time PCR. Expression of E-cadherin and collagen type IV was found in healthy and arthritic synovial tissue. Expression of alpha-sma was only found in the synovial lining layer of RA patients. Stimulation of healthy FLSs with SF resulted in an upregulation of alpha-sma and TLH mRNA. Collagen type I and TLH mRNA were upregulated after stimulation with TGF-beta. Addition of bone morphogenetic protein (BMP)-7 to healthy FLS stimulated with SF inhibited the expression of alpha-sma mRNA. The finding that E-cadherin and collagen type IV are expressed in the lining layer of healthy and arthritic synovium indicates that these lining cells display an epithelial-like phenotype. In addition, the presence of alpha-sma in the synovial lining layer of RA patients and induction of fibrotic markers in healthy FLSs by SF from RA patients indicate that a regulated process comparable to EMT might cause the alteration in phenotype of RA FLSs. Therefore, BMP-7 may represent a promising agent to counteract the transition imposed on synoviocytes in the RA joint.  相似文献   

6.
7.
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease of unclear etiology. This study was conducted to identify critical factors involved in the synovial hyperplasia in RA pathology. We applied cDNA microarray analysis to profile the gene expressions of RA fibroblast-like synoviocytes (FLSs) from patients with RA. We found that the MLN51 (metastatic lymph node 51) gene, identified in breast cancer, is remarkably upregulated in the hyperactive RA FLSs. However, growth-retarded RA FLSs passaged in vitro expressed small quantities of MLN51. MLN51 expression was significantly enhanced in the FLSs when the growth-retarded FLSs were treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) or synovial fluid (SF). Anti-GM-CSF neutralizing antibody blocked the MLN51 expression even though the FLSs were cultured in the presence of SF. In contrast, GM-CSF in SFs existed at a significant level in the patients with RA (n = 6), in comparison with the other inflammatory cytokines, IL-1beta and TNF-alpha. Most RA FLSs at passage 10 or more recovered from their growth retardation when cultured in the presence of SF. The SF-mediated growth recovery was markedly impaired by anti-GM-CSF antibody. Growth-retarded RA FLSs recovered their proliferative capacity after treatment with GM-CSF in a dose-dependent manner. However, MLN51 knock-down by siRNA completely blocked the GM-CSF/SF-mediated proliferation of RA FLSs. Taken together, our results imply that MLN51, induced by GM-CSF, is important in the proliferation of RA FLSs in the pathogenesis of RA.  相似文献   

8.
9.

Introduction

Follistatin-like protein 1 (FSTL1) is a proinflammation mediator implicated in arthritis in rodent animal models. The present study is aimed at assessing FSTL1 levels in systemic autoimmune diseases and correlating them with disease activity in patients with rheumatoid arthritis (RA).

Methods

Serum FSTL1 levels from 487 patients with systemic autoimmune diseases and 69 healthy individuals were measured by enzyme-linked immunosorbent assay (ELISA). FSTL1 expression in synovial fluid (SF) and synovial tissues (STs) was determined by ELISA, immunohistochemistry, real-time polymerase chain reaction (RT-PCR) and western blot analysis in RA patients and trauma controls. FSTL1 levels in fibroblast-like synoviocytes (FLSs) from RA patients were determined by real-time PCR and western blot analysis.

Results

Serum FSTL1 levels were significantly elevated in patients with RA, ulcerative colitis, systemic lupus erythematosus, Sjögren's syndrome (SS), systemic sclerosis and polymyositis/dermatomyositis. Serum FSTL1 levels in the RA and secondary SS patients were substantially higher than those in other patients. Serum FSTL1 levels were increased in early RA, rheumatoid factor (RF)- and anti-cyclic citrullinated peptide antibody (ACPA)-negative patients compared to healthy controls. Moreover, serum FSTL1 concentrations were significantly higher in long-standing RA patients than in early RA patients and in the RF- and ACPA-positive RA patients than in RF- and ACPA-negative RA patients. Elevated FSTL1 levels in the STs and SF of RA patients were also observed. FSTL1 levels in serum were markedly higher than those in SF in RA patients. The strongest FSTL1 staining was detected in the cytoplasm of synovial and capillary endothelial cells from RA synovium. Furthermore, FSTL1 was induced in FLSs by inflammatory mediators. Importantly, serum FSTL1 levels were correlated with several important biologic and clinical markers of disease activity, including erythrocyte sedimentation rate, C-reactive protein, RF, ACPA, swollen joint count, patient global visual analogue scale score and Disease Activity Score 28 in the adult RA patient population. Notably, serum FSTL1 levels were significantly diminished following successful treatment and clinical improvement.

Conclusions

Elevated FSTL1 levels reflect not only joint diseases but also inflammation and tissue degradation in systemic autoimmune diseases. Serum FSTL1 levels may thus serve as a serological inflammatory marker of disease activity in RA patients.  相似文献   

10.
11.

Introduction

We previously reported that sialyl Lewisy, synthesized by fucosyltransferases, is involved in angiogenesis. Fucosyltransferase 1 (fut1) is an α(1,2)-fucosyltransferase responsible for synthesis of the H blood group and Lewisy antigens. However, the angiogenic involvement of fut 1 in the pathogenesis of rheumatoid arthritis synovial tissue (RA ST) has not been clearly defined.

Methods

Assay of α(1,2)-linked fucosylated proteins in RA was performed by enzyme-linked lectin assay. Fut1 expression was determined in RA ST samples by immunohistological staining. We performed angiogenic Matrigel assays using a co-culture system of human dermal microvascular endothelial cells (HMVECs) and fut1 small interfering RNA (siRNA) transfected RA synovial fibroblasts. To determine if fut1 played a role in leukocyte retention and cell proliferation in the RA synovium, myeloid THP-1 cell adhesion assays and fut1 siRNA transfected RA synovial fibroblast proliferation assays were performed.

Results

Total α(1,2)-linked fucosylated proteins in RA ST were significantly higher compared to normal (NL) ST. Fut1 expression on RA ST lining cells positively correlated with ST inflammation. HMVECs from a co-culture system with fut1 siRNA transfected RA synovial fibroblasts exhibited decreased endothelial cell tube formation compared to control siRNA transfected RA synovial fibroblasts. Fut1 siRNA also inhibited myeloid THP-1 adhesion to RA synovial fibroblasts and RA synovial fibroblast proliferation.

Conclusions

These data show that α(1,2)-linked fucosylated proteins are upregulated in RA ST compared to NL ST. We also show that fut1 in RA synovial fibroblasts is important in angiogenesis, leukocyte-synovial fibroblast adhesion, and synovial fibroblast proliferation, all key processes in the pathogenesis of RA.  相似文献   

12.
13.
IntroductionOur previous work has revealed that expression of follistatin-like protein 1 (FSTL1) is elevated in the synovial tissues from osteoarthritis (OA) patients. The aim of this study was to elucidate the underlying molecular mechanisms by which FSTL1 plays a role in the pathogenesis of OA.MethodsCultured fibroblast-like synoviocytes (FLSs) from synovial tissues of OA patients were stimulated with human recombinant FSTL1, and then the expression of inflammatory cytokines in FLS and their concentrations in the cell supernatants were measured by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Nuclear factor kappa B (NF-κB) activation was examined by western blot and chromatin immunoprecipitation (ChIP) assay at the p65 binding site. Finally, the proliferation of FLSs and the expression level of the proliferation-related tumor suppressors (p53 and p21) were determined by MTS assay kit and western blot in the presence or absence of FSTL1, respectively.ResultsFSTL1 remarkably promoted expression levels of several inflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6)) in vitro. Western blot analysis showed that FSTL1 activated the inflammatory-related NF-κB signaling pathway, as validated by ChIP assay detecting p65-binding level on the cytokine promoter region. Moreover, FSTL1 promoted the proliferation of OA FLS by downregulating the expression of p53 and p21. Interestingly, the concentration of synovial fluid IL-6 was remarkably elevated in OA patients, and was correlated with synovial fluid and serum FSTL1 levels.ConclusionsThese findings show that FSTL1 functions as an important proinflammatory factor in the pathogenesis of OA by activating the canonical NF-κB pathway and enhancing synoviocytes proliferation, suggesting that FSTL1 may be a promising target for the treatment of OA.  相似文献   

14.

Introduction  

Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.  相似文献   

15.
Kurose A  Yoshida W  Yoshida M  Sawai T 《Cytometry》2001,44(4):349-354
BACKGROUND: Proliferation of synovial cells is considered to play a key role in rheumatoid arthritis (RA). Using paclitaxel, a unique antineoplastic agent known to suppress collagen-induced arthritis, we conducted an in vitro study of cell kinetics on cultured synovial cells from patients with RA. METHODS: Alterations of the cell cycle of cultured fibroblast-like synovial cells (FLSs) from patients with RA were studied using flow cytometry and laser scanning cytometry. Apoptosis and accumulation of cyclin concerning effects of paclitaxel were detected. RESULTS: Paclitaxel induced arrest of the cell cycle at G2/M phase and apoptosis in FLSs. The late stage of apoptosis was determined by the positivity of terminal deoxynucleotidyl transferase assay. Morphological observation by combined usage of both annexin V and propidium iodide on FLSs on a slide glass showed early apoptotic changes in detail. FLSs arrested at G2/M phase showed marked accumulation of cyclin B1. The effects of paclitaxel decreased on FLSs, which diminished proliferative activity. CONCLUSIONS: These data indicate that paclitaxel induces cell arrest at G2/M phase followed by apoptosis in human FLSs, which have high proliferative activity, and possible therapeutic effects of paclitaxel on RA.  相似文献   

16.

Introduction

Chemerin is a chemotactic agonist identified as a ligand for ChemR23 that is expressed on macrophages and dendritic cells (DCs). In this study, we analyzed the expression of chemerin and ChemR23 in the synovium of rheumatoid arthritis (RA) patients and the stimulatory effects of chemerin on fibroblast-like synoviocytes (FLSs) from RA patients.

Methods

Chemerin and ChemR23 expression in the RA synovium was ascertained by immunohistochemistry and Western blot analysis. Chemerin expression on cultured FLSs was analyzed by ELISA. ChemR23 expression on FLSs was determined by immunocytochemistry and Western blot analysis. Cytokine production from FLSs was measured by ELISA. FLS cell motility was evaluated by utilizing a scrape motility assay. We also examined the stimulating effect of chemerin on the phosphorylation of mitogen-activated protein kinase (MAPK), p44/42 mitogen-activated protein kinase (ERK1/2), p38MAPK, c-Jun N-terminal kinase (JNK)1/2 and Akt, as well as on the degradation of regulator of NF-κB (IκBα) in FLSs, by Western blot analysis.

Results

Chemerin was expressed on endothelial cells and synovial lining and sublining cells. ChemR23 was expressed on macrophages, immature DCs and FLSs and a few mature DCs in the RA synovium. Chemerin and ChemR23 were highly expressed in the RA synovium compared with osteoarthritis. Chemerin and ChemR23 were expressed on unstimulated FLSs. TNF-α and IFN-γ upregulated chemerin production. Chemerin enhanced the production of IL-6, chemokine (C-C motif) ligand 2 and matrix metalloproteinase 3 by FLSs, as well as increasing FLS motility. The stimulatory effects of chemerin on FLSs were mediated by activation of ERK1/2, p38MAPK and Akt, but not by JNK1/2. Degradation of IκB in FLSs was not promoted by chemerin stimulation. Inhibition of the ERK1/2, p38MAPK and Akt signaling pathways significantly suppressed chemerin-induced IL-6 production. Moreover, blockade of the p38MAPK and Akt pathways, but not the ERK1/2 pathway, inhibited chemerin-enhanced cell motility.

Conclusions

The interaction of chemerin and ChemR23 may play an important role in the pathogenesis of RA through the activation of FLSs.  相似文献   

17.
BackgroundOsteopontin (OPN) is an important proinflammatory cytokine in rheumatoid arthritis (RA). Levels of OPN have been shown to be significantly correlated with interleukin-17 (IL-17) production and expression of Th17 cells in the synovial fluid of RA patients. Here, we investigated the role of OPN in monocyte migration, IL-17 production and osteoblasts.MethodsOPN and IL-17 expression profiles in osteoarthritis (OA) and RA synovial fluid were determined by enzyme-linked immunosorbent assay (ELISA). The expression of the microRNA, miR-129-3p, in osteoblasts was analyzed by real-time quantitative polymerase chain reaction (qPCR). Immunoreactive proteins were spotted by Western blotting. We used the collagen-induced arthritis (CIA) mouse model to investigate the role of OPN in monocyte migration during RA.ResultsOPN and IL-17 expression were higher in RA synovial fluid as compared to OA samples. We also found that OPN promotes IL-17 expression in osteoblasts and thereby enhances monocyte migration via the Syk/PI3K/Akt signaling pathway. miR-129-3p expression was found to be negatively regulated by OPN via the Syk/PI3K/Akt signal cascade. In contrast, lentiviral vectors expressing short hairpin RNA inhibited OPN expression and ameliorated articular swelling, cartilage erosion and monocyte infiltration in the ankle joints of CIA mice.ConclusionTo our knowledge, our study is the first to describe how OPN promotes monocyte migration by upregulating IL-17 expression in osteoblasts in RA disease.SignificanceThese findings indicate that OPN could serve as a potential therapeutic target for the treatment of RA.  相似文献   

18.
Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells.  相似文献   

19.

Introduction  

Expression of TXNDC5, which is induced by hypoxia, stimulates cell proliferation and angiogenesis. Our previous study detected increased TXNDC5 expression in the synovial tissues of rheumatoid arthritis (RA) patients using proteomic methods. The current study investigated a pathogenic role for TXNDC5 in RA.  相似文献   

20.
This study aimed to investigate the role and regulatory mechanisms of Ezrin in synovial vessels in rheumatoid arthritis (RA). Synovial tissues were obtained from people with osteoarthritis people and patients with RA patients. We also used an antigen-induced arthritis (AIA) mice model by using Freund's adjuvant injections. Ezrin expression was analysed by immunofluorescence and immunohistochemical staining in synovial vessels of patients with RA and AIA mice. We investigated the role of Ezrin on vascular endothelial cells and its regulatory mechanism in vivo and in vitro by adenoviral transfection technology. Our results suggest a role for the Ezrin protein in proliferation, migration and angiogenesis of vascular endothelial cells in RA. We also demonstrate that Ezrin plays an important role in vascular endothelial cell migration and tube formation through regulation of the Hippo-yes-associated protein 1 (YAP) pathway. YAP, as a key protein, can further regulate the activity of PI3K/Akt signalling pathway in vascular endothelial cells. In AIA mice experiments, we observed that the inhibition of Ezrin or of its downstream YAP pathway can affect synovial angiogenesis and may lead to progression of RA. In conclusion, Ezrin plays an important role in angiogenesis in the RA synovium by regulating YAP nuclear translocation and interacting with the PI3K/Akt signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号