首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.  相似文献   

2.
A detailed analysis of the historical and contemporary range of the Siberian sturgeon, Acipenser baerii, shows that the contemporary status of its populations and forms can be described as threatened or endangered. Recently, the abundance of the nominal subspecies, A. b. baerii, which inhabits mainly the Ob River basin, decreased sharply. Due to construction of hydroelectric dams, up to 40% of the spawning grounds became inaccessible for migrating sturgeon of this subspecies. The Lake Baikal subspecies, A. baerii baicalensis, is extremely rare and was included in the Russian Federation Red Data Book in 1983. The abundance of the east Siberian subspecies, A. baerii stenorrhynchus, inhabiting the basins of the east Siberia rivers, has also significantly decreased during the last few years. Its range in the Yenisey and Lena River basins is gradually being reduced. Gametogenesis is anomalous in a high number of females from all populations of this subspecies (in the Kolyma and Indigirka river stocks 80–100% of females were anomalous in 1987–1989). These anomalies seem to be caused by high levels of water pollution.  相似文献   

3.
Biology, fisheries, and conservation of sturgeons and paddlefish in China   总被引:26,自引:0,他引:26  
This paper reviews five of the eight species of acipenseriforms that occur in China, chiefly those of the Amur and Yangtze rivers. Kaluga Huso dauricus and Amur sturgeon Acipenser schrenckii are endemic to the Amur River. Both species still support fisheries, but stocks are declining due to overfishing. Acipenseriformes of the Yangtze River are primarily threatened by hydroelectric dams that block free passage to spawning and feeding areas. The Chinese paddlefish Psephurus gladius now is rare in the Yangtze River system, and its spawning activities were severely limited by completion of the Gezhouba Dam in 1981. Since 1988, only 3–10 adult paddlefishes per year have been found below the dam. Limited spawning still exists above the dam, but when the new Three Gorges Dam is complete, it will further threaten the paddlefish. Artificial propagation appears to be the only hope for preventing extinction of P. gladius, but it has yet to be successfully bred in captivity. Dabry's sturgeon A. dabryanus is a small, exclusively freshwater sturgeon found only in the Yangtze River system. It is concentrated today in reaches of the main stream above Gezhouba Dam. The fishery has been closed since 1983, but populations continue to decline. Acipenser dabryanus has been cultured since the 1970s, and holds promise for commercial aquaculture; availability of aquacultural methods offers hope for enhancing natural populations. The Chinese sturgeon A. sinensis occurs in the Yangtze and Pearl rivers and seas of east Asia. There is still disagreement about the taxonomy of the Pearl and Yangtze River populations. The Yangtze River population is anadromous. Adults begin spawning at about age 14 years (males) and 21 years (females), and adults spend over 15 months in the river for reproduction. Spawning sites of A. sinensis were found every year since 1982 below the Gezhouba Dam, but it seems that insufficient suitable ground is available for spawning. Since 1983, commercial fishing has been prohibited but more measures need to be taken such as establishing protected areas and characterizing critical spawning, summering and wintering habitats.  相似文献   

4.
North American green sturgeon, Acipenser medirostris, was petitioned for listing under the Endangered Species Act (ESA). The two questions that need to be answered when considering an ESA listing are; (1) Is the entity a species under the ESA and if so (2) is the “species” in danger of extinction or likely to become an endangered species in the foreseeable future throughout all or a significant portion of its range? Green sturgeon genetic analyses showed strong differentiation between northern and southern populations, and therefore, the species was divided into Northern and Southern Distinct Population Segments (DPSs). The Northern DPS includes populations in the Rogue, Klamath-Trinity, and Eel rivers, while the Southern DPS only includes a single population in the Sacramento River. The principal risk factors for green sturgeon include loss of spawning habitat, harvest, and entrainment. The Northern DPS is not considered to be in danger of extinction or likely to become an endangered species in the foreseeable future. The loss of spawning habitat is not large enough to threaten this DPS, although the Eel River has been severely impacted by sedimentation due to poor land use practices and floods. The two main spawning populations in the Rogue and Klamath-Trinity rivers occupy separate basins reducing the potential for loss of the DPS through catastrophic events. Harvest has been substantially reduced and green sturgeon in this DPS do not face substantial entrainment loss. However there are significant concerns due to lack of information, flow and temperature issues, and habitat degradation. The Southern DPS is considered likely to become an endangered species in the foreseeable future. Green sturgeon in this DPS are concentrated into one spawning area outside of their natural habitat in the Sacramento River, making them vulnerable to catastrophic extinction. Green sturgeon spawning areas have been lost from the area above Shasta Dam on the Sacramento River and Oroville Dam on the Feather River. Entrainment of individuals into water diversion projects is an additional source of risk, and the large decline in numbers of green sturgeon entrained since 1986 causes additional concern.  相似文献   

5.
Spawning by lake sturgeon (Acipenser fulvescens) in the Detroit River   总被引:1,自引:0,他引:1  
Overfishing and habitat destruction in the early 1900s devastated lake sturgeon (Acipenser fulvescens) populations in the Great Lakes. Although a comprehensive restoration strategy for this species was recently drafted by the Michigan Department of Natural Resources, a lack of current data on Great Lakes sturgeon stocks has hindered rehabilitation efforts. Historically, the Detroit River supported one of the largest lake sturgeon populations in the Great Lakes; however, little is known about the current population or its habitat use. The main objective of this study was to determine if lake sturgeon spawns in the Detroit River. As part of a larger study, baited setlines were used to capture lake sturgeon in the Detroit River in the spring and summer of 2000 and 2001. In each year of the study, ultrasonic transmitters were surgically implanted in 10 adult fish to track their movements, evaluate habitat use and identify possible spawning sites. Using telemetry and egg mats to verify spawning activity, one spawning site was located and verified in the Detroit River. Spawning was verified by recovering sturgeon eggs deposited on egg collection mats anchored at the site. Telemetry data suggested that several other possible spawning sites also may exist, however, spawning activity was not verified at these sites.  相似文献   

6.
To this day, the only sturgeon to be listed on the French vertebrate inventory is the European sturgeon (Acipenser sturio Linnaeus, 1758). The recent study of sturgeon remains on various French archaeological sites shows the presence of another species: the Atlantic sturgeon (A. oxyrinchus Mitchill 1815). This species already existed in the French Atlantic region at the end of the Neolithic Age 5000 years ago and was still to be found 3000 years later. Thus the A. oxyrinchus determined in several Baltic medieval sites are neither the only nor the first sturgeons to have inhabited European waters. Sturgeon restoration projects in European rivers necessitate a precise determination of the native species. In the case of relict or extinct species, the bone remains found on archaeological sites represent the most reliable source of information. This discovery will also be the starting point of palaeogenetical research (mitochondrial and cellular aDNA) and will give information about the genetic diversity of these threatened or recently extinct populations.  相似文献   

7.
Natural mortality of Atlantic sturgeon (Acipenser oxyrinchus) has been determined to be low (M = 0.07). Reported herein is the mortality by beach stranding of 11 Atlantic sturgeon in Scot's Bay, part of the inner Bay of Fundy in Nova Scotia, Canada on 22 June 2014. Genetic analyses, histological analysis and age determination were performed to determine origin, maturity stage and age of the stranded Atlantic sturgeon. Microsatellite and mitochondrial DNA analyses indicated that four of the Atlantic sturgeon (2 males and 2 females) were from the Saint John River, NB population, which was designated as threatened by the Committee on the Status of Endangered Wildlife in Canada. Seven Atlantic sturgeon (1 male, 5 females, 1 unknown) were from the Kennebec River, Maine population, that was listed as threatened under the Endangered Species Act in the U. S. Ageing of A. oxyrinchus Atlantic sturgeon by pectoral fin spine analysis determined that the mean age of the individuals from the Saint John River (x? = 24.25 years, SD = 5.0) and the Kennebec River (x? = 22.7 years, SD = 3.5) were not significantly different. This is the first report of a stranding event of Atlantic sturgeon, and describes a source of natural mortality affecting populations of concern in both Canada and the U. S.  相似文献   

8.
Sturgeon populations in the Danube River have been affected by a combination of hydropower development, over-harvesting, habitat degradation from agricultural and industrial practices and from urbanization. The effects of these changes have been monitored on six sturgeon species inhabiting the Danube River. Two of them are resident species, while the other four migrate to the river for spawning. Atlantic sturgeon (Acipenser sturio) has completely disappeared from this region. Ship sturgeon (Acipenser nudiventris) is very rare in professional fishing catches. Beluga (Huso huso), Russian sturgeon (Acipenser gueldenstaedtii), stellate sturgeon (Acipenser stellatus) and sterlet (Acipenser ruthenus) are endangered with different levels of extinction risk. Here, we model the time dependence of the beluga and Russian sturgeon catch in the Serbian part of the Danube River. Predicted extinction of Russian sturgeon was estimated to fall around the middle of the century, and for beluga approximately at middle of the millennium. Suggestions for sturgeon conservation measures on a national level and coordination of all relevant institutions in Serbia are also presented.  相似文献   

9.
Synopsis The Atlantic sturgeon supported major fisheries along the entire Atlantic coast of North America. These fisheries peaked about 1890 and then suffered almost total collapse by 1905. The Atlantic sturgeon is anadromous and highly susceptible to capture during spawning migrations. Further, this species biological characteristics makes it very vulnerable to man-induced changes in natural habitat and slow to recover. Atlantic sturgeon mature at an advanced age (7–27 year for females, depending on latitude), exhibit a long interspawning period (2–5 year), and require suitable riverine, estuarine, and coastal environments for successful completion of their life cycle. Today, only remnant stocks exist in areas of former abundance. Management regulations vary considerably from state to state and range from full protection to no protection. Biological data are needed to: identify and characterize specific spawning and nursery areas; delineate migratory patterns and recruitment to various stocks; establish stock abundance; and, assess effects of various management strategies. In order to protect remaining stocks, the imposition of a total harvesting moratorium is recommended.  相似文献   

10.
Shortnose sturgeon Acipenser brevirostrum is federally listed as ‘‘an endangered species threatened with extinction’’ in the U.S. but its listing status is currently under review. As part of this process, the U.S. National Marine Fisheries Service will determine if shortnose sturgeon are divided into Distinct Population Segments (DPS) across its distribution. In this regard, we sought to determine if shortnose sturgeon occur in genetically “discrete population segments,” and if so, the boundaries of each. We used mitochondrial DNA (mtDNA) control region sequence analysis to assess the genetic discreteness of 14 of 19 river populations that were recommended as DPS in the 1998 Final Recovery Plan for Shortnose Sturgeon. Nine of the 14 proposed DPS proved significantly discrete (< 0.05 after Bonferoni correction) from both of their bracketing populations, the exceptions being those in the Penobscot River, Chesapeake Bay, Cooper River, and Ogeechee River (our sample from the Cape Fear River was insufficient to statistically analyze). Haplotype frequencies in the newly “rediscovered” Penobscot River collection were almost identical to those in the proximal Kennebec River system. Genetic data in combination with tagging results suggest that shortnose sturgeon in the Penobscot River are probably migrants from the Kennebec. Likewise, shortnose sturgeon found today within the Chesapeake Bay appear to be migrants from the Delaware River. While haplotype frequencies in the remnant Santee River population in Lake Marion differed significantly from those in nearby Winyah Bay, they did not differ significantly from those in the Cooper River. This suggests that the Cooper River harbors descendants of the Santee River population that are unable to access their historical spawning locales. The Ogeechee River collection was not genetically distinct from that in the nearby Savannah River, suggesting that it may host descendants of hatchery-reared individuals of Savannah River ancestry. Our genetic results indicate that most, but not all, rivers with shortnose sturgeon host genetically discrete populations, constituting important information in the consideration of DPS designations. However, shortnose sturgeon migrations through coastal waters to proximal rivers and release of hatchery-reared fish may confound results from genetic studies such as ours and lead to the possible misidentification of discrete population segments.  相似文献   

11.
Historically, shortnose sturgeon inhabited most major rivers on the Atlantic coast of North America south of the Saint John River, Canada. Today, only 16 populations may remain. Major anthropogenic impacts on shortnose sturgeon are blockage of spawning runs by dams, harvest of adults (bycatch and poaching), dredging of fresh/saltwater riverine reaches, regulation of river flows, and pollution. The pattern of anadromy (adult use of salt water) varies with latitude. The pattern may reflect bioenergetic adaptations to latitudinal differences between fresh and salt water habitats for thermal and foraging suitability. The greater adult abundance in northern and north-central populations likely reflects a historical difference with southern populations that is currently accentuated by increased anthropogenic impacts on southern populations. Adult abundance is less than the minimum estimated viable population abundance of 1000 adults for 5 of 11 surveyed populations, and all natural southern populations. Across the latitudinal range, spawning adults typically travel to about river km 200 or farther upstream. Dams built downstream of spawning reaches block spawning runs, and can divide amphidromous populations into up- and downstream segments. Conservation efforts should correct environmental and harvest impacts, not stock cultured fish into wild populations.  相似文献   

12.
Lake sturgeon (Acipenser fulvescens) are endangered in the Laurentian Great Lakes with increasing binational efforts to establish spawning grounds to aid restoration. While SCUBA surveys can document spawning activity, these are labour-intensive and may disrupt spawning. We used passive acoustic monitoring to quantify spawning sounds of lake sturgeon as a first step to developing remote sensing of sturgeon spawning grounds. Acipenser sp. are known to make a variety of sounds including, “thunders” (aka drums), which have been documented in A. fulvescens during spawning. We quantified drums from a known spawning bed. We recorded 5 different potential sturgeon sounds but only quantified drums as a marker for spawning activity. Drums were low frequency with average frequency peaks at 40 and 92 Hz and a rapid drop-off thereafter. There was no relationship between calling activity and water temperature but calling activity increased as the summer progressed. Call production was most active from 0600 to 1500 h with little calling activity during nighttime recordings. The presence of low frequency boat sounds did correlate with a reduction in maximum calling rate so it is possible that commercial shipping may disrupt sturgeon communication, but more research is necessary to separate correlational from causative effects. These recordings represent a promising approach to map sturgeon spawning activity and show the potential effect of human activity on communication in this threatened species.  相似文献   

13.
Once widely abundant, most subpopulations of the endangered Atlantic sturgeon are now estimated to be only 1–10% of their historical levels. The Edisto River has been sampled for a long period and extensively for juvenile Atlantic sturgeon from separate spring- and fall-spawned cohorts. Our objectives are to characterize the genetic diversity, stability, adaptive potential, and potential genetic structure of Atlantic sturgeon in the Edisto River and to identify any past bottlenecks experienced by this species, as well as to conduct forward simulation modeling of the population under multiple population trajectories. Our results indicate that fall- and spring-spawned Atlantic sturgeon in the Edisto River are genetically distinct (overall \({{F}_{ST}}\)?=?0.092) with little gene flow or admixture between groups, both of which are diverse from a neutral genetic marker standpoint. Genetic diversity of both groups is on the higher end of published population diversity values. A lack of inbreeding and recent bottlenecks also bode well for these two groups of sturgeon, although future projections indicate a loss of allelic richness and genetic diversity even with population stability. Our effective population size estimates are moderate compared to published estimates for other Atlantic sturgeon populations. The most significant finding of our research is the genetic distinctness of the fall- and spring-spawned Atlantic sturgeon in the Edisto River, which may have several important ramifications for management of the species, including re-evaluating the demarcation of distinct population segments.  相似文献   

14.
The anadromous Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, a wide-ranging species along the Atlantic Coast of North America, is being considered for federal listing under the U.S. Endangered Species Act. Identification of distinct population segments (DPS) is necessary but problematic for highly vagile species such as Atlantic sturgeon which may spend a high proportion of their lives outside of their natal estuaries. Characterization of genetic differentiation and estimates of gene flow provide a quantitative measure of the number of DPS into which species could be divided over their distribution and the reproductive independence of each unit. We sequenced a portion of the mitochondrial DNA control region to characterize population structure and gene flow across all naturally reproducing populations from which specimens could be obtained. We then considered these genetic data along with ancillary information on life history characteristics, historical fisheries data, and trajectories of abundance to determine the number of DPS into which this species should be divided. Our results suggest that philopatry is high for Atlantic sturgeon and that each U.S. estuary analyzed hosts genetically distinct populations of Atlantic sturgeon. We conclude that at least nine DPS of Atlantic sturgeon exist along the Atlantic Coast of the U.S. In contrast, the Atlantic Sturgeon Status Review Team has proposed a five DPS scheme for this subspecies based largely on results from nuclear DNA microsatellites, but with fewer populations represented and lower samples sizes. These different conclusions illustrate the somewhat arbitrary nature of the DPS concept, at least as applied to Atlantic sturgeon.  相似文献   

15.
The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an “endangered species threatened with extinction” in the US and “Vulnerable” on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population.  相似文献   

16.
Quantified were the age, growth, mortality and reproductive structure of lake sturgeon (Acipenser fulvescens) collected in the US and Canadian waters of the Namakan Reservoir. The hypotheses were tested that (i) age and growth of lake sturgeon in the Namakan Reservoir would differ by sex and reproductive stage of maturity, and (ii) that the relative strength of year‐classes of lake sturgeon in the reservoir would be affected by environmental variables. To quantify age, growth and mortality of the population, existing data was used from a multi‐agency database containing information on all lake sturgeon sampled in the reservoir from 2004 to 2009. Lake sturgeon were sampled in the Minnesota and Ontario waters of the Namakan Reservoir using multi‐filament gillnets 1.8 m high and 30–100 m long and varying in mesh size from 178 to 356 mm stretch. Reproductive structure of the lake sturgeon was assessed only during spring 2008 and 2009 using plasma testosterone and estradiol‐17β concentrations. Ages of lake sturgeon >75 cm ranged from 9 to 86 years (n = 533, mean = 36 years). A catch‐curve analysis using the 1981–1953 year classes estimated total annual mortality of adults to be 4.8% and annual survival as 95.2%. Using logistic regression analysis, it was found that total annual precipitation was positively associated with lake sturgeon year‐class strength in the Namakan Reservoir. A 10 cm increase in total annual precipitation was associated with at least a 39% increase in the odds of occurrence of a strong year class of lake sturgeon in the reservoir. Plasma steroid analysis revealed a sex ratio of 2.4 females: 1 male and, on average, 10% of female and 30% of male lake sturgeon were reproductively mature each year (i.e. potential spawners). Moreover, there was evidence based on re‐captured male fish of both periodic and annual spawning, as well as the ability of males to rapidly undergo gonadal maturation prior to spawning. Knowledge of lake sturgeon reproductive structure and factors influencing recruitment success contribute to the widespread conservation efforts for this threatened species.  相似文献   

17.
Human disturbances to ecosystems have created challenges to populations worldwide, forcing them to respond phenotypically in ways that increase their fitness under current conditions. One approach to examining population responses to disturbance in species with complex life histories is to study species that exhibit spatial patterns in their phenotypic response across populations or demes. In this study, we investigate a threatened population of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River of Idaho, in which a significant fraction of the juvenile population have been shown to exhibit a yearling out-migration strategy which had not previously been thought to exist. It has been suggested that dam-related environmental changes may have altered the selective pressures experienced by out-migrating fall chinook, driving evolution of a later and more selectively advantageous migration strategy. Using isotopic analysis of otoliths from returning adult spawners, we reconstructed the locations of individual fish at three major juvenile life stages to determine if the representation of the yearling life history was geographically structured within the population. We reconstructed juvenile locations for natal, rearing and overwintering life stages in each of the major spawning areas in the basin. Our results indicate that the yearling life-history strategy is predominantly represented within one of the main spawning regions, the Clearwater River, rather than being distributed throughout the basin. Previous studies have shown the Clearwater River to have cooler temperatures, later hatch dates, and later outmigration of juveniles, indicating a link between environment and expression of the yearling life history. Our data suggest that this new yearling life history may be disproportionally represented in returning adult spawners, indicating selection for this life history within the population.  相似文献   

18.
19.
Species translocations are increasingly being used as a management tool to mitigate population losses due to such factors as habitat degradation and fragmentation, but post‐introduction follow‐up is relatively sparse. Post‐translocation telemetry can assess success by identifying activity, emigrations, survival, habitat usage, and reproductive events, aiding in the continued management of translocated populations and informing future efforts. This study assessed movement of translocated adult lake sturgeon (Acipenser fulvescens) immediately post‐release and a decade later, and tested for associations between environmental variables and spawning movements. Prior to their translocation in 2002, 13 of 51 adult lake sturgeon were surgically implanted with radio telemetry tags and tracked for 1 year. In 2011 and 2013, eight additional adults were captured within the reintroduction site and implanted with radio‐tags. Six of the 13 sturgeon tagged in 2002 dispersed downstream over a dam during the early post‐release period. In spring 2014, tagged adults were tracked to the spillway at the release area's inflow, and spawning was confirmed by larval captures. Movement data for tagged adults differed between the two tracking periods, showing marked differences in behaviour over time. Water velocity was correlated with upstream and downstream spawning movements, with water temperature also correlated with downstream movement. Research regarding post‐translocation movement and dispersal provides insight on behavioural responses following translocation, and may improve outcomes by informing future efforts.  相似文献   

20.
The anadromous Gulf sturgeon occurs along the north central coast of the Gulf of Mexico and is federally listed as threatened. We analyzed fine‐scale patterns of Gulf sturgeon population structure, focusing on the Pascagoula River drainage of Mississippi, in reference to movement patterns as determined via telemetry and capture data. We genotyped 361 Gulf sturgeon using eight microsatellite loci including samples from the Pascagoula, Pearl, Escambia, Yellow, Choctawhatchee, and Apalachicola river drainages. Pairwise FST estimates indicated that genetic structure occurs at least at the drainage level. The Pascagoula and Pearl rivers form a western group, demonstrating 100% bootstrap support for a division with drainages to the east. Assignment tests detected non‐natal genotypes occurring in all drainages. According to assignment tests, the Pascagoula supports an admixture of individuals, containing minimal influence from drainages to the east (2%) and substantial interaction with the Pearl River (14.1%). The occurrence of Pascagoula River fish in the Pearl was non‐reciprocal, observed at 1.1%. After accounting for non‐natal genetic diversity within the Pascagoula, there remained a disparity between a pooled Pascagoula group and the only documented spawning site within the drainage located in the Bouie River. We interpret this as an indication of a second genetic stock within the Pascagoula River drainage. Radio telemetry data suggest that spawning likely occurs in the Chickasawhay River, in areas isolated from the Bouie River spawning site by about 350 river kilometers. We emphasize the utility of integrating field and molecular approaches when delineating fine‐scale patterns of population structure in anadromous fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号