首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
采用单层贴壁分化的方法在无血清条件下诱导同源饲养层培养的人胚胎干细胞定向分化,得到了高比例的神经前体细胞(97.5±0.83)%(P<0.05)。这些神经前体细胞具有分化为神经元、星形胶质细胞和少突胶质细胞的能力。在长期的传代培养中发现,随着培养时间的延长,nestin阳性的神经前体细胞比例下降,同时发育能力也发生了变化。在传代培养的早期,神经前体细胞发育为神经元的比例很高,几乎没有胶质细胞分化出来。随着培养时间的延长,胶质细胞的比例逐渐上升。这与体内神经系统的发育过程非常相似。进一步研究发现具有bHLH(basic helix-loop-helix)结构域的转录因子neurogenein2(Ngn2)和Olig2可能在这一变化中起重要作用。因此,人胚胎干细胞来源的神经前体细胞能够模拟体内神经发育的模式,为在体外研究人的神经发育和再生医学奠定了基础。  相似文献   

2.
Timing and extent of cell expansion and specialization in the developing nervous system are tightly controlled. In a recent issue of Genes and Development, Seo and coworkers (2005a) show that geminin (Gem), a protein involved in cell cycle control, also regulates the transition from proliferating neural progenitors to differentiating neurons.  相似文献   

3.
A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA-NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved.  相似文献   

4.
In the central nervous system (CNS), giving rise to the diversity and the complexity of neurons is the spatial and temporal differentiation of neural stem cells and/or neural precursors. Here, we investigated the role of Jagged-mediated Notch signaling in the maintenance and differentiation of progenitor cells during late neurogenesis by analyzing the expression patterns of zebrafish jagged homologues, and by injecting their morpholinos. Expression of both jagged2 and jagged1b mRNA in the CNS suggested that they might be involved in control of differentiating neural progenitors in which they are involved later in development. In Jagged2 and Jagged1b knock-down embryos, the overall rate of cell division dramatically decreased, and the ectopic VeMe neurons were generated. The results suggest that Jagged-Notch signaling plays a critical role in the maintenance of proliferating neural precursors, and that the generation of late-born neurons, especially VeMe neurons, is regulated by the interplay between Jagged2 and Jagged1b.  相似文献   

5.
During embryonic development, changes in cell cycle kinetics have been associated with neurogenesis. This observation suggests that specific cell cycle regulators may be recruited to modify cell cycle dynamics and influence the decision between proliferation and differentiation. In the present study, we investigate the role of core positive cell cycle regulators, the CDC25 phosphatases, in this process. We report that, in the developing chicken spinal cord, only CDC25A is expressed in domains where neural progenitors undergo proliferative self-renewing divisions, whereas the combinatorial expression of CDC25A and CDC25B correlates remarkably well with areas where neurogenesis occurs. We also establish that neural progenitors expressing both CDC25A and CDC25B have a shorter G2 phase than those expressing CDC25A alone. We examine the functional relevance of these correlations using an RNAi-based method that allows us to knock down CDC25B efficiently and specifically. Reducing CDC25B expression results in a specific lengthening of the G2 phase, whereas the S-phase length and the total cell cycle time are not significantly modified. This modification of cell cycle kinetics is associated with a reduction in neuron production that is due to the altered conversion of proliferating neural progenitor cells to post-mitotic neurons. Thus, expression of CDC25B in neural progenitors has two functions: to change cell cycle kinetics and in particular G2-phase length and also to promote neuron production, identifying new roles for this phosphatase during neurogenesis.  相似文献   

6.
During central nervous system development, neural progenitors are patterned to form discrete neurogenic and non-neurogenic zones. In the zebrafish hindbrain, neurogenesis is organised by Fgf20a emanating from neurons located at each segment centre that inhibits neuronal differentiation in adjacent progenitors. Here, we have identified a molecular mechanism that clusters fgf20a-expressing neurons in segment centres and uncovered a requirement for this positioning in the regulation of neurogenesis. Disruption of hindbrain boundary cell formation alters the organisation of fgf20a-expressing neurons, consistent with a role of chemorepulsion from boundaries. The semaphorins Sema3fb and Sema3gb, which are expressed by boundary cells, and their receptor Nrp2a are required for clustering of fgf20a-expressing neurons at segment centres. The dispersal of fgf20a-expressing neurons that occurs following the disruption of boundaries or of Sema3fb/Sema3gb signalling leads to reduced FGF target gene expression in progenitors and an increased number of differentiating neurons. Sema3 signalling from boundaries thus links hindbrain segmentation to the positioning of fgf20a-expressing neurons that regulates neurogenesis.  相似文献   

7.
During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.  相似文献   

8.
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreER(T2) under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter--i.e. the Sub Ventricular Zone--AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFP(flox)-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons.  相似文献   

9.

Background

In the differentiation of mouse embryonic stem (ES) cells into neurons using the 5-stage method, cells in stage 4 are in general used as neural progenitors (NPs) because of their ability to give rise to neurons. The choice of stage 4 raises several questions about neural progenitors such as the type of cell types that are specifically considered to be neural progenitors, the exact time when these progenitors become capable of neurogenesis and whether neurogenesis is an independent and autonomous process or the result of an interaction between NP cells and the surrounding cells.

Methodology/Principal Findings

In this study, we found that the confluent monolayer cells and neural sphere like cell clusters both appeared in the culture of the first 14 days and the subsequent 6 weeks. However, only the sphere cells are neural progenitors that give rise to neurons and astrocytes. The NP cells require 14 days to mature into neural lineages fully capable of differentiation. We also found that although the confluent monolayer cells do not undergo neurogenesis, they play a crucial role in the growth, differentiation, and apoptosis of the sphere cells, during the first 14 days and long term culture, by secreted factors and direct cell to cell contact.

Conclusions/Significance

The sphere cells in stage 4 are more committed to developing into neural progenitors than monolayer cells. Interaction between the monolayer cells and sphere cells is important in the development of stage 4 cell characteristics.  相似文献   

10.
11.
The evolution of the mitochondrion has been followed within differentiating neuronal cells, both in primary cultures of neurons from fetal rat cortex and during rat brain cortex maturation. Changes in total mitochondrial proteins (mt-proteins) were evaluated, and qualitative changes in the mt-proteins pattern were analyzed using the Western blot technique. The evolution of mt-protein contents in cultured neurons resembles what is observed during rat brain maturation. The mitochondrion exhibits pronounced changes in the course of neurogenesis, in particular, bursts of mitochondrial masses accompanying the successive steps of neurogenesis are observed. There are indications that protein equipment of mitochondria during neuronal development undergoes variations. Although more work is required to establish the significance of these correlations, the present data might suggest an important role of the mitochondrion in neurogenesis.  相似文献   

12.
Identification of neural progenitors in the adult mammalian eye   总被引:27,自引:0,他引:27  
We have shown that the embryonic mammalian retina contains neural progenitors which display stem cell properties in vitro. Here we report the characterization of neural progenitors isolated from the adult mammalian eye. These quiescent cells, located in the pigmented ciliary bodies, proliferate in the presence of FGF2 and express the neuroectodermal marker nestin. The proliferating cells give rise to neural spheres and are multipotential; they express cell type-specific markers corresponding to neurons and glia. In addition, neural progenitors can generate secondary neural spheres, thus displaying potential to self-renew. The ciliary body-derived neural progenitors display retina-specific properties; the undifferentiated cells express Chx10, a retinal progenitor marker, and upon differentiation express markers corresponding to specific retinal cell types. Therefore, the pigmented ciliary body in the adult mammalian eye harbors neural progenitors that display stem cell properties and have the capacity to give rise to retinal neurons in vitro.  相似文献   

13.
Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP+ve/nestin+ve radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP−ve/nestin+ve Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP+ve/nestin+ve/BrdU+ve) and Type-1b (GFAP+ve/nestin+ve/BrdU−ve). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP−ve/nestin+ve/BrdU+ve) progenitors were few compared to Type-1. Type-3 (DCX+ve) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.  相似文献   

14.
MECP2 protein binds preferentially to methylated CpGs and regulates gene expression by causing changes in chromatin structure. The mechanism by which impaired MECP2 activity can induce pathological abnormalities in the nervous system of patients with Rett syndrome (RTT) is not clearly understood. To gain further insight into the role of MECP2 in human neurogenesis, we compared the neural differentiation process in mesenchymal stem cells (MSCs) obtained from a RTT patient and from healthy donors. We further analyzed neural differentiation in a human neuroblastoma cell line carrying a partially silenced MECP2 gene. Senescence and reduced expression of neural markers were observed in proliferating and differentiating MSCs from the RTT patient, which suggests that impaired activity of MECP2 protein may impair neural differentiation, as observed in RTT patients. Next, we used an inducible expression system to silence MECP2 in neuroblastoma cells before and after the induction of neural differentiation via retinoic acid treatment. This approach was used to test whether MECP2 inactivation affected the cell fate of neural progenitors and/or neuronal differentiation and maintenance. Overall, our data suggest that neural cell fate and neuronal maintenance may be perturbed by senescence triggered by impaired MECP2 activity either before or after neural differentiation.  相似文献   

15.
16.
17.
Cell cycle regulation during mouse olfactory neurogenesis.   总被引:4,自引:0,他引:4  
The development of the nervous system requires a strict control of cell cycle entry and withdrawal. The olfactory epithelium (OE) is noticeable by its ability to yield new neurons not only during development but also continuously during adulthood. The aim of our study was to investigate, by biochemical and immunohistochemical methods, which cell cycle regulators are involved in the control of neuron production during OE development and maturity. At birth, olfactory neural progenitors, the basal cells, exhibited a high mitogenic and neurogenic activity, decreasing in the following weeks together with the drop in expression of several cell cycle regulators. p27Kip1 and p18Ink4c, at birth, were expressed in the whole basal cell layer, whereas p16Ink4a, p19Ink4d, and p21Cip1 were rather located in differentiating or mature neurons. CDK inhibitors may thus act sequentially during this developmental neurogenic process. By comparison, in the adult OE, in which most neural precursors were quiescent, these cells still exhibited p18Ink4c expression but only occasionally p27Kip1 expression. It suggests that p18Ink4c may contribute to maintain basal cells in a quiescent state, whereas p27Kip1 expression in these cells may be rather linked to their neurogenic activity, which declines with age. In keeping with this hypothesis, transgenic mice that lacked p27Kip1 expression displayed a higher rate of cell proliferation versus differentiation in their OE. In these mice, a down-regulation of positive cell cycle regulators was observed that may contribute to compensate for the absence of p27Kip1. Taken together, the present data suggest distinct functions for CDK inhibitors, either in the control of cell cycle exit and differentiation during neurogenesis (respectively, p27Kip1 and p19Ink4d) or in the maintenance of a quiescent state in neural progenitors (p18Ink4c) or neurons (p21Cip1) in adults.  相似文献   

18.
The mammalian cerebral cortex comprises six layers of neurons. Cortical progenitors in the ventricular zone generate neurons specific to each layer through successive cell divisions. Neurons of layer VI are generated at an early stage, whereas later-born neurons occupy progressively upper layers. The underlying molecular mechanisms of neurogenesis, however, are relatively unknown. In this study, we devised a system where the Notch pathway was activated spatiotemporally in the cortex by in vivo electroporation and Cre-mediated DNA recombination. Electroporation at E13.5 transferred DNA to early progenitors that gave rise to neurons of both low and upper layers. Forced expression of a constitutively active form of Notch (caNotch) at E13.5 inhibited progenitors from generating neurons and kept progenitors as proliferating radial glial cells. After subsequent transfection at E15.5 of a Cre expression vector to remove caNotch, double-transfected cells, in which caNotch was excised, migrated into the cortical plate and differentiated into neurons specific to upper layers. Bromodeoxyuridine-labeling experiments showed that the neurons were born after Cre transfection. These results indicate that cortical progenitors that had been temporarily subjected to Notch activation at an early stage generated neurons at later stages, but that the generation of low-layer neurons was skipped. Moreover, the double-transfected cells gave rise to upper-layer neurons, even after their transplantation into the E13.5 brain, indicating that the developmental state of progenitors is not halted by caNotch activity.  相似文献   

19.
The adult hippocampus is one of the primary neural structures involved in memory formation. In addition to synapse-specific modifications thought to encode information at the subcellular level, changes in the intrahippocampal neuro-populational activity and dynamics at the circuit-level may contribute substantively to the functional capacity of this region. Within the hippocampus, the dentate gyrus has the potential to make a preferential contribution to neural circuit modification owing to the continuous addition of new granule cell population. The integration of newborn neurons into pre-existing circuitry is hypothesized to deliver a unique processing capacity, as opposed to merely replacing dying granule cells. Recent studies have begun to assess the impact of hippocampal neurogenesis by examining the extent to which adult-born neurons participate in hippocampal networks, including when newborn neurons become engaged in ongoing network activity and how they modulate circuit dynamics via their unique intrinsic physiological properties. Understanding the contributions of adult neurogenesis to hippocampal function will provide new insight into the fundamental aspects of brain plasticity, which can be used to guide therapeutic interventions to replace neural populations damaged by disease or injury.  相似文献   

20.
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号