首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

In future DNA sequencing, gel electrophoresis, which is particularly effective for de novo sequencing, is likely to be replaced by sequencing by hybridization, mass spectrometry, or combinations of these two methods, which are particularly effective for comparative or diagnostic sequencing.  相似文献   

3.
4.
人类基因组的物理图谱与大规模DNA测序   总被引:3,自引:0,他引:3  
于军YU  Jun 《遗传》1998,20(6):41-47
1历史的回顾物理图谱的制作是与分子克隆技术分不开的。限制性内切酶的发现,导致了第一个物理图谱的完成(SV40;Danna与Nathans,1971)。新克隆技术,尤其是YAC(YeastArtificialChromosome)和BAC(Bacter...  相似文献   

5.
6.
作为人类基因组最为典型的表观遗传现象,DNA甲基化在多种关键生理活动中扮演重要角色.系统分析基因组尺度的DNA甲基化概况意义重大.从Cp G岛等基本定义出发,阐述了高通量DNA甲基化的检测技术以及针对芯片技术与下一代测序技术的低水平数据处理方法;重点对比了基于机器学习理论对Cp G位点及Cp G岛甲基化水平的预测算法,以及所利用的特征对预测效果的影响与发展趋势;并对DNA差异甲基化在组织特异性、癌症等多种疾病中的计算分析进行了全面的综述.  相似文献   

7.
Over the past few years, new high-throughput DNA sequencing technologies have dramatically increased speed and reduced sequencing costs. However, the use of these sequencing technologies is often challenged by errors and biases associated with the bioinformatical methods used for analyzing the data. In particular, the use of naïve methods to identify polymorphic sites and infer genotypes can inflate downstream analyses. Recently, explicit modeling of genotype probability distributions has been proposed as a method for taking genotype call uncertainty into account. Based on this idea, we propose a novel method for quantifying population genetic differentiation from next-generation sequencing data. In addition, we present a strategy for investigating population structure via principal components analysis. Through extensive simulations, we compare the new method herein proposed to approaches based on genotype calling and demonstrate a marked improvement in estimation accuracy for a wide range of conditions. We apply the method to a large-scale genomic data set of domesticated and wild silkworms sequenced at low coverage. We find that we can infer the fine-scale genetic structure of the sampled individuals, suggesting that employing this new method is useful for investigating the genetic relationships of populations sampled at low coverage.  相似文献   

8.
9.
As a result of improvements in genome assembly algorithms and the ever decreasing costs of high-throughput sequencing technologies, new high quality draft genome sequences are published at a striking pace. With well-established methodologies, larger and more complex genomes are being tackled, including polyploid plant genomes. Given the similarity between multiple copies of a basic genome in polyploid individuals, assembly of such data usually results in collapsed contigs that represent a variable number of homoeologous genomic regions. Unfortunately, such collapse is often not ideal, as keeping contigs separate can lead both to improved assembly and also insights about how haplotypes influence phenotype. Here, we describe a first step in avoiding inappropriate collapse during assembly. In particular, we describe ConPADE (Contig Ploidy and Allele Dosage Estimation), a probabilistic method that estimates the ploidy of any given contig/scaffold based on its allele proportions. In the process, we report findings regarding errors in sequencing. The method can be used for whole genome shotgun (WGS) sequencing data. We also show applicability of the method for variant calling and allele dosage estimation. Results for simulated and real datasets are discussed and provide evidence that ConPADE performs well as long as enough sequencing coverage is available, or the true contig ploidy is low. We show that ConPADE may also be used for related applications, such as the identification of duplicated genes in fragmented assemblies, although refinements are needed.  相似文献   

10.
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago.  相似文献   

11.
The fluctuation of population size has not been well studied in the previous studies of theoretical linkage disequilibrium (LD) expectation. In this study, an improved theoretical prediction of LD decay was derived to account for the effects of changes in effective population sizes. The equation was used to estimate effective population size (Ne) assuming a constant Ne and LD at equilibrium, and these Ne estimates implied the past changes of Ne for a certain number of generations until equilibrium, which differed based on recombination rate. As the influence of recent population history on the Ne estimates is larger than old population history, recent changes in population size can be inferred more accurately than old changes. The theoretical predictions based on this improved expression showed accurate agreement with the simulated values. When applied to human genome data, the detailed recent history of human populations was obtained. The inferred past population history of each population showed good correspondence with historical studies. Specifically, four populations (three African ancestries and one Mexican ancestry) showed population growth that was significantly less than that of other populations, and two populations originated from China showed prominent exponential growth. During the examination of overall LD decay in the human genome, a selection pressure on chromosome 14, the gephyrin gene, was observed in all populations.  相似文献   

12.
由中国深圳华大基因研究院和丹麦哥本哈根大学联合创建的中丹基因组联合中心以Saqqaq古人为样本,完成了世界首例古人类全基因组的深度序列测定和解读.这一历史性成果以封面故事发表在2010年2月11日出版的科学期刊上.  相似文献   

13.
14.
Single nucleotide polymorphisms (SNPs) are essential for identifying the genetic mechanisms of complex traits. In the present study, we applied genotyping by genome reducing and sequencing (GGRS) method to construct a 252-plex sequencing library for SNP discovery and genotyping in chicken. The library was successfully sequenced on an Illumina HiSeq 2500 sequencer with a paired-end pattern; approximately 400 million raw reads were generated, and an average of approximately 1.4 million good reads per sample were generated. A total of 91,767 SNPs were identified after strict filtering, and all of the 252 samples and all of the chromosomes were well represented. Compared with the Illumina 60K chicken SNP chip data, approximately 34,131 more SNPs were identified using GGRS, and a higher SNP density was found using GGRS, which could be beneficial for downstream analysis. Using the GGRS method, more than 3528 samples can be sequenced simultaneously, and the cost is reduced to $18 per sample. To the best of our knowledge, this study describes the first report of such highly multiplexed sequencing in chicken, indicating potential applications for genome-wide association and genomic selection in chicken.  相似文献   

15.
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.  相似文献   

16.
近年来,随着测序技术的不断发展,基因组测序技术渐趋成熟并在动物和植物基因组上获得了越来越多的成功,大量植物的基因组的草图和精细图不断地被公布出来。比较和分析了三代测序技术各自的特点,对测序前的准备、基因组组装、注释和比较基因组学等方面的研究进展进行了详细的评述,阐明了植物基因组研究的特点和难点。通过植物的全基因组测序,研究者不仅可以获得该植物基因组和重要功能基因的序列信息,为从分子水平研究植物的分子进化、基因组成和基因调控等提供了一定的依据,而且还对即将测序的植物基因组研究具有重要的借鉴意义。  相似文献   

17.
18.
Ngari virus (NRIV) is a recently described, naturally occurring reassortant between two other orthobunyaviruses, Bunyamwera virus (BUNV) and Batai virus (BATV). Intriguingly, this reassortment was associated with the acquisition of heightened virulence, although the molecular basis for this is not understood. Here we report the first complete genome sequences of Ngari virus. We include five isolates from various geographical locations, as well as samples isolated from both mosquitos and human cases. Based on an analysis of these sequence data, NRIVs are clearly genetically distinct from all known BUNV and BATV strains but are very closely related to one another regardless of their source.  相似文献   

19.
Improvements to the GDB Human Genome Data Base.   总被引:5,自引:2,他引:3       下载免费PDF全文
Version 6.0 of the Human Genome Data Base introduces a number of significant improvements over previous releases of GDB. The most important of these are revised data representations for genes and genomic maps and a new curatorial model for the database. GDB 6.0 is the first major genomic database to provide read/write access directly to the scientific community, including capabilities for third-party annotation. The revised database can represent all major categories of genetic and physical maps, along with the underlying order and distance information used to construct them. The improved representation permits more sophisticated map queries to be posed and supports the graphical display of maps. In addition the new GDB has a richer model for gene information, better suited for supporting cross-references to databases describing gene function, structure, products, expression and associated phenotypes.  相似文献   

20.
水稻基因组测序的研究进展   总被引:3,自引:0,他引:3  
杨宇  陈瑞阳 《遗传》2001,23(6):580-582
水稻是最重要的粮食作物之一,世界上大约有一半的人口以水稻为主要粮食。作为基因组研究的模式植物,水稻基因组的测序工作已在世界范围内展开。此项研究工作不仅能破译水稻全基因组序列,还将有助于了解其他禾本科植物的基因组信息。本对水稻基因组测序工作进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号