首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Movement of the DNA replication machinery through the double helix induces acute positive supercoiling ahead of the fork and precatenanes behind it. Because topoisomerase I and II create transient single- and double-stranded DNA breaks, respectively, it has been assumed that type I enzymes relax the positive supercoils that precede the replication fork. Conversely, type II enzymes primarily resolve the precatenanes and untangle catenated daughter chromosomes. However, studies on yeast and bacteria suggest that type II topoisomerases may also function ahead of the replication machinery. If this is the case, then positive DNA supercoils should be the preferred relaxation substrate for topoisomerase IIalpha, the enzyme isoform involved in replicative processes in humans. Results indicate that human topoisomerase IIalpha relaxes positively supercoiled plasmids >10-fold faster than negatively supercoiled molecules. In contrast, topoisomerase IIbeta, which is not required for DNA replication, displays no such preference. In addition to its high rates of relaxation, topoisomerase IIalpha maintains lower levels of DNA cleavage complexes with positively supercoiled molecules. These properties suggest that human topoisomerase IIalpha has the potential to alleviate torsional stress ahead of replication forks in an efficient and safe manner.  相似文献   

2.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

3.
DNA replication requires the unwinding of the parental duplex, which generates (+) supercoiling ahead of the replication fork. It has been thought that removal of these (+) supercoils was the only method of unlinking the parental strands. Recent evidence implies that supercoils can diffuse across the replication fork, resulting in interwound replicated strands called precatenanes. Topoisomerases can then act both in front of and behind the replication fork. A new study by Sogo et al. [J Mol Biol 1999;286:637-643 (Ref. 1)], using a topological analysis, provides the best evidence that precatenanes exist in negatively supercoiled, partially replicated molecules in vivo.  相似文献   

4.
Early in the staged initiation of enzymatic replication of plasmids containing the unique origin of the E. coli chromosome (oriC), the plasmid is converted to a new topological form which is highly underwound, two to 15 times more than native supercoiled DNA. The underwinding reaction precedes priming of DNA synthesis and follows an initial complex formation, requiring ATP and proteins dnaA, dnaB, and dnaC; underwinding depends on the further addition of gyrase and SSB. DnaB protein as a helicase and gyrase as a topoisomerase drive the underwinding with the energy of ATP hydrolysis. The underwound template, extensively single-stranded and complexed with proteins, is an active form for priming by primase and elongation by DNA polymerase III holoenzyme.  相似文献   

5.
Many studies have demonstrated the need for processing of blocked replication forks to underpin genome duplication. UvrD helicase in Escherichia coli has been implicated in the processing of damaged replication forks, or the recombination intermediates formed from damaged forks. Here we show that UvrD can unwind forked DNA structures, in part due to the ability of UvrD to initiate unwinding from discontinuities within the phosphodiester backbone of DNA. UvrD does therefore have the capacity to target DNA intermediates of replication and recombination. Such an activity resulted in unwinding of what would be the parental duplex DNA ahead of either a stalled replication fork or a D-loop formed by recombination. However, UvrD had a substrate preference for fork structures having a nascent lagging strand at the branch point but no leading strand. Furthermore, at such structures the polarity of UvrD altered so that unwinding of the lagging strand predominated. This reaction is reminiscent of the PriC-Rep pathway of replication restart, suggesting that UvrD and Rep may have at least partially redundant functions.  相似文献   

6.
DNA replication in eucaryotic cells involves a variety of proteins which synthesize the leading and lagging strands in an asymmetric coordinated manner. To analyse the effect of this asymmetry on the translesion synthesis of UV-induced lesions, we have incubated SV40 origin-containing plasmids with a unique site-specific cis, syn-cyclobutane dimer or a pyrimidine-pyrimidone (6-4) photoproduct on either the leading or lagging strand template with DNA replication-competent extracts made from human HeLa cells. Two dimensional agarose gel electrophoresis analyses revealed a strong blockage of fork progression only when the UV lesion is located on the leading strand template. Because DNA helicases are responsible for unwinding duplex DNA ahead of the fork and are then the first component to encounter any potential lesion, we tested the effect of these single photoproducts on the unwinding activity of the SV40 T antigen, the major helicase in our in vitro replication assay. We showed that the activity of the SV40 T-antigen helicase is not inhibited by UV-induced DNA lesions in double-stranded DNA substrate.  相似文献   

7.
During origin-independent replisome assembly, the replication restart protein PriC prefers to load the replication fork helicase, DnaB, to stalled replication forks where there is a gap in the nascent leading strand. However, this activity can be obstructed if the 5'-end of the nascent lagging strand is near the template branch point. Here we provide biochemical evidence that the helicase activities of Rep and PriA function to unwind the nascent lagging strand DNA at such stalled replication forks. PriC then loads the replicative helicase, DnaB, onto the newly generated, single-stranded template for the purposes of replisome assembly and duplex unwinding ahead of the replication fork. Direct rescue of replication forks by the Rep-PriC and PriA-PriC pathways in this manner may contribute to genomic stability by avoiding the potential dangers of fork breakage inherent to recombination-dependent restart pathways.  相似文献   

8.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

9.

Background  

Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM.  相似文献   

10.
Bacteriophage T4 gene 59 protein greatly stimulates the loading of the T4 gene 41 helicase in vitro and is required for recombination and recombination-dependent DNA replication in vivo. 59 protein binds preferentially to forked DNA and interacts directly with the T4 41 helicase and gene 32 single-stranded DNA-binding protein. The helicase loader is an almost completely alpha-helical, two-domain protein, whose N-terminal domain has strong structural similarity to the DNA-binding domains of high mobility group proteins. We have previously speculated that this high mobility group-like region may bind the duplex ahead of the fork, with the C-terminal domain providing separate binding sites for the fork arms and at least part of the docking area for the helicase and 32 protein. Here, we characterize several mutants of 59 protein in an initial effort to test this model. We find that the I87A mutation, at the position where the fork arms would separate in the model, is defective in binding fork DNA. As a consequence, it is defective in stimulating both unwinding by the helicase and replication by the T4 system. 59 protein with a deletion of the two C-terminal residues, Lys(216) and Tyr(217), binds fork DNA normally. In contrast to the wild type, the deletion protein fails to promote binding of 32 protein on short fork DNA. However, it binds 32 protein in the absence of DNA. The deletion is also somewhat defective in stimulating unwinding of fork DNA by the helicase and replication by the T4 system. We suggest that the absence of the two terminal residues may alter the configuration of the lagging strand fork arm on the surface of the C-terminal domain, so that it is a poorer docking site for the helicase and 32 protein.  相似文献   

11.
When replication stalls and forks disassemble, the restart primosome is required to reload the replicative helicase so that chromosomal replication can be reinitiated. We have taken a photo-cross-linking approach, using model replication forks containing a phenyl diazirine placed at single locations, to determine the positions of primosomal protein binding and changes in interactions that occur during the assembly reaction. This approach revealed a novel mode for single-stranded DNA-binding protein (SSB)-DNA binding, in which SSB interacts with both the leading and lagging single-strand segments and the parental duplex of the fork. Cross-linking to a novel region within SSB is observed only when it is bound to forked structures. This binding mode is also followed by PriB. PriA binds to the fork, excluding SSB and PriB, interacting with the primer terminus, single-stranded leading and lagging strands and duplex in immediate proximity of the fork. SSB binds to flanking single-stranded segments distal to the fork in the presence of PriA. The addition of PriB or DnaT to a PriA-SSB-fork complex does not lead to cross-linking or displacement, suggesting that their association is through protein-protein interactions at early stages of the reaction. Upon addition of DnaC and the DnaB helicase in the presence of ATPγS, helicase is assembled, leading to contacts within the duplex region on the tracking (lagging) strand and strong contacts with the displaced leading single strand near the fork. PriA is displaced from DNA upon helicase assembly.  相似文献   

12.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

13.
When fluoroquinolones bind to gyrase or topoisomerase IV in the presence of DNA, they alter protein conformation. DNA cleavage results with diminished religation, so the enzymes are trapped in ternary complexes with drug and cleaved DNA. Preferential localization of gyrase ahead of replication forks and topoisomerase IV behind them causes fluoroquinolone-mediated complexes with the two enzymes to have different physiological consequences.  相似文献   

14.
The ability of DNA gyrase (Gyr) to wrap the DNA strand around itself allows Gyr to introduce negative supercoils into DNA molecules. It has been demonstrated that the deletion of the C-terminal DNA-binding domain of the GyrA subunit abolishes the ability of Gyr to wrap the DNA strand and catalyze the supercoiling reaction (Kampranis, S. C., and Maxwell, A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14416-14421). By using this mutant Gyr, Gyr (A59), we have studied effects of Gyr-mediated wrapping of the DNA strand on its replicative function and its interaction with the quinolone antibacterial drugs. We find that Gyr (A59) can support oriC DNA replication in vitro. However, Gyr (A59)-catalyzed decatenation activity is not efficient enough to complete the decatenation of replicating daughter DNA molecules. As is the case with topoisomerase IV, the active cleavage and reunion activity of Gyr is required for the formation of the ternary complex that can arrest replication fork progression in vitro. Although the quinolone drugs stimulate the covalent Gyr (A59)-DNA complex formation, the Gyr (A59)-quinolone-DNA ternary complexes do not arrest the progression of replication forks. Thus, the quinolone-induced covalent topoisomerase-DNA complex formation is necessary but not sufficient to cause the inhibition of DNA replication. We also assess the stability of ternary complexes formed with Gyr (A59), the wild type Gyr, or topoisomerase IV. The ternary complexes formed with Gyr (A59) are more sensitive to salt than those formed with either the wild type Gyr or topoisomerase IV. Furthermore, a competition experiment demonstrates that the ternary complexes formed with Gyr (A59) readily disassociate from the DNA, whereas the ternary complexes formed with either the wild type Gyr or topoisomerase IV remain stably bound. Thus, Gyr-mediated wrapping of the DNA strand is required for the formation of the stable Gyr-quinolone-DNA ternary complex that can arrest replication fork progression.  相似文献   

15.
This article is a perspective on the separation of the complementary strands of DNA during replication. Given the challenges of DNA strand separation and its vital importance, it is not surprising that cells have developed many strategies for promoting unlinking. We summarize seven different factors that contribute to strand separation and chromosome segregation. These are: (1) supercoiling promotes unlinking by condensation of DNA; (2) unlinking takes place throughout a replicating domain by the complementary action of topoisomerases on precatenanes and supercoils; (3) topological domains isolate the events near the replication fork and permit the supercoiling-dependent condensation of partially replicated DNA; (4) type-II topoisomerases use ATP to actively unlink DNA past the equilibrium position; (5) the effective DNA concentration in vivo is less than the global DNA concentration; (6) mechanical forces help unlink chromosomes; and (7) site-specific recombination promotes unlinking at the termination of replication by resolving circular dimeric chromosomes.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
DnaB is the primary replicative helicase in Escherichia coli. We show here that DnaB can unwind two duplex arms simultaneously for an extended distance provided that two protein rings are positioned on opposite sides of the duplex arms. A putative eukaryotic replication fork helicase, Mcm4,6,7, performs a similar activity. Double-ringed melting of duplexes may function at a replication fork in vivo. This mechanism may apply to RuvB, since the proteins share mechanistic similarities. Thus, two RuvB hexamers may function in coordination at a Holliday junction to overcome regions of DNA heterology and DNA lesions. Furthermore, DnaB can actively translocate along DNA while encircling three DNA strands. Therefore, if DnaB encounters a D loop during fork progression, it will encircle the invading strand and may convert the recombinative invading strand to a daughter lagging strand. Finally, we present evidence that the DNA binding site of DnaB is buried inside its central channel.  相似文献   

17.
In E. coli, the regression of stalled DNA replication forks is catalyzed by the DNA helicase RecG. One means of gaining access to the fork is by binding to the single strand binding protein or SSB. This interaction occurs via the wedge domain of RecG and the intrinsically disordered linker (IDL) of SSB, in a manner similar to that of SH3 domains binding to PXXP motif‐containing ligands in eukaryotic cells. During loading, SSB remodels the wedge domain so that the helicase domains bind to the parental, duplex DNA, permitting the helicase to translocate using thermal energy. This translocation may be used to clear the fork of obstacles, prior to the initiation of fork regression.  相似文献   

18.
A crude soluble enzyme system capable of authentic replication of a variety of oriC plasmids has been replaced by purified proteins constituting three functional classes: initiation proteins (RNA polymerase, dnaA protein, gyrase) that recognize the oriC sequence and presumably prime the leading strand of the replication fork; replication proteins (DNA polymerase III holoenzyme, single-strand binding protein, primosomal proteins) that sustain progress of the replication fork; and specificity proteins (topoisomerase I, RNAase H1 protein HU) that suppress initiation of replication at sequences other than oriC, coated with dnaA protein. Protein HU and unidentified factors in crude enzyme fractions stimulate replication at one or more stages. Replication has been separated temporally and physically into successive stages of RNA synthesis and DNA synthesis.  相似文献   

19.
Mcm4,6,7 is a ring-shaped heterohexamer and the putative eukaryotic replication fork helicase. In this study, we examine the mechanism of Mcm4,6,7. Mcm4,6,7 binds to only one strand of a duplex during unwinding, corresponding to the leading strand of a replication fork. Mcm4,6,7 unwinding stops at a nick in either strand. The Mcm4,6,7 ring also actively translocates along duplex DNA, enabling the protein to drive branch migration of Holliday junctions. The Mcm4,6,7 mechanism is very similar to DnaB, except the proteins translocate with opposite polarity along DNA. Mcm4,6,7 and DnaB have different structural folds and evolved independently; thus, the similarity in mechanism is surprising. We propose a "pump in ring" mechanism for both Mcm4,6,7 and DnaB, wherein a single-stranded DNA pump is situated within the central channel of the ring-shaped helicase, and unwinding is the result of steric exclusion. In this example of convergent evolution, the "pump in ring" mechanism was probably selected by eukaryotic and bacterial replication fork helicases in order to restrict unwinding to replication fork structures, stop unwinding when the replication fork encounters a nick, and actively translocate along duplex DNA to accomplish additional activities such as DNA branch migration.  相似文献   

20.
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号