首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 2' and 3'-O-aminoacyl-dinucleoside phosphates cytidylyl(3'-5')-2'(3')-O-L-phenyl-alanyladenosine (I), cytidylyl(3'-5')-3'-deoxy-2'-O-L-phenylalanyladenosine (IIa), cytidylyl(3'-5')-2'-deoxy-3'-O-L-phenylalanyladenosine (IIIa), cytidylyl(3'-5')-3'-deoxy-2'-O-glycyladenosine (IIb), cytidylyl(3'-5')-2'-deoxy-3'-O-glycyladenosine (IIIb), cytidylyl(3'-5')-3'-deoxy-2'-O-L-leucyladenosine (IIc), cytidylyl(3'-5')-2'-deoxy-3'-O-L-leucyladenosine (IIIc), cytidylyl(3'-5')-3'-O-L-phenylalanyladenosine (IIId) as analogs of the 2'(3')-aminoacyl-tRNA termini, on chloramphenicol binding to 70S Excherichia coli ribosomes was investigated. The association constants (Kb) of the investigated compounds were determined by the equilibrium dialysis method. Based on the constancy of Kb over the range of inhibitor concentration, it was determined that the binding site of the 2' isomers IIa-IIc overlaps with the chloramphenicol site, whereas the variability of Kb for the 3' isomers IIIb, IIIc and especially IIIa seems to indicate that they do not achieve a complete fit. The consistently higher values of the Kb values for the 3' isomers IIIa-IIIc relative to that of the 2' isomers IIa-IIc also indicate a stabilization of the binding of the former due to a specific interaction between its amino acid portion and a ribosomal site.  相似文献   

2.
RNA exhibits a higher structural diversity than DNA and is an important molecule in the biology of life. It shows a number of secondary structures such as duplexes, hairpin loops, bulges, internal loops, etc. However, in natural RNA, bases are limited to the four predominant structures U, C, A, and G and so the number of compounds that can be used for investigation of parameters of base stacking, base pairing, and hydrogen bond is limited. We synthesized different fluoromodifications of RNA building blocks: 1'-deoxy-1'-phenyl-beta-D-ribofuranose (B), 1'-deoxy-1'-(4-fluorophenyl)-beta-D-ribofuranose (4 FB), 1'-deoxy-1'-(2,4-difluorophenyl)-beta-D-ribofuranose (2,4 DFB), 1'-deoxy- 1'-(2,4,5-trifluorophenyl)-beta-D-ribofuranose (2,4,5 TFB), 1'-deoxy- 1'-(2,4, 6-trifluorophenyl)-beta-D-ribofuranose, 1'-deoxy- 1'-(pentafluorophenyl)-beta-D-ribofuranose (PFB), 1'-deoxy-1'-(benzimidazol-1-yl)-beta-D-ribofuranose (BI), 1'-deoxy-1'-(4-fluoro-1H-benzimidazol-1-yl)-1-beta-ribofuranose (4 FBI), 1'-deoxy- 1'-(6-fluoro- 1H-benzimidazol-1-yl)-beta-D-ribofuranose (6FBI), 1'-deoxy- 1'-(4, 6-difluoro- 1H-benzimidazol- 1-yl)-beta-D-ribofuranose (4,6 DFBI), 1'-deoxy- 1'-(4-trifluoromnethyl- H-benzimidazol-1-yl)-beta-D-ribofuranose (4 TFM), 1'-deoxy-1'-(5-trifluoromnethyl-1H-benzimidazol-1-yl)-beta-D-ribofuranose (5 TFM), and 1'-deoxy-1'-(6-trifluoromethyl-1H-benzimidazol-1-yl)-beta-D-ribofuranose (6 TFM). These amidites were incorporated and tested in a defined A, U-rich RNA sequence (12-mer, 5-CUU UUCXUU CUU-3' paired with 3'-GAA AAG YAA GAA-5'). Only one position was modified, marked as X and Y, respectively. UV melting profiles of those oligonucleotides were measured.  相似文献   

3.
(Z)-4',5'-Didehydro-5'-deoxy-5'-fluoroadenosine (I), 5'-deoxy-5'-difluoroadenosine (II), and 4',5'-didehydro-5'-deoxy-5'-fluoroarabinosyl-adenosine (III) are inhibitors of rat liver S-adenosyl-L-homocysteine hydrolase. Compounds I and II are time-dependent and irreversible inhibitors of the enzyme. Both I and II are oxidized by E.NAD to produce E.NADH, and fluoride anion is formed in the inactivation reaction (0.7 to 1.0 mole fluoride/mole of enzyme subunit, and 1.7 moles fluoride/mole of enzyme subunit from I and II, respectively). The enzyme is stoichiometrically labeled with [8-3H]-I, but the label is lost upon denaturation of the protein either with or without treatment of the labeled complex with sodium borohydride. The compound III, the arabino derivative of I, is a competitive inhibitor of the enzyme. The mechanism of the inhibition of S-adenosyl-L-homocysteine hydrolase by these inhibitors is discussed.  相似文献   

4.
Hydrogenation of 2'-deoxy-2'-difluoromethylene-5'-O-dimethoxytrityluridine (1) and 3'-deoxy-3'-difluoromethylene-5'-O-dimethoxytrityluridine (7), gave the corresponding 2'- and 3'-difluoromethyluridine derivatives 2a and 8a. Detritylation of compounds 2a, 2b and 8a, 8b resulted in the formation of 1-(2-deoxy-2-C-difluoromethyl-beta-D-arabino-pentofuranosyl)uracil (3a) and 1-(3-deoxy-3-C-difluoromethyl-beta-D-xylo-pento furanosyl)- uracil (9a) as well as corresponding minor isomers 3b and 9b. Compounds 3a and 3b were also obtained from 2'-deoxy-2'-difluoromethylene-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine (4). Finally, phosphitylation of 2a and 8a provided the title 2'- and 3'-O-phosphoramidites 6 and 10.  相似文献   

5.
The sensitivity for recognition of adenosine 3:5'-monophosphate (cAMP) by its coordinate proteins towards chemical changes in the six-membered cyclic phosphate ring has been investigated. A comparison of the interaction parameters of the 3' and 5'-amido analogues (I, II) and of unsubstituted cAMP has been made using two different protein kinases and the phosphodiesterase from bovine heart. Binding affinity and the capacity of the amido analogues to stimulate the phosphotransferase activity of the kinases is greatly reeuced relative to cAMP, the 3'-position being more sensitive towards the modification than the 5'-position. The coordinate noncyclic derivatives, 3'-deoxy-3'-amino-5'-AMP (IV) and 5'-deoxy-5'-amino-3'-amp (iii), were also tested. Surprisingly activity towards protein kinases was found to be considerable for the 5'-deoxy-5'-amino-3'-AMP (III), while the 3'-deoxy-3'-amino-5'-AMP (IV) is practically inactive. A possible reason for this is that the noncylic 5'-analogue (III) may be able to assume a cyclic structure maintained by internal salt formation. The phosphodiesterase splits both cyclic amido analogues but with reduced rates compared to that of natural cAMP. Kinetic data obtained from different methods reveal a stronger affinity for the 5'-analogue (I) than the 3'-analogue (II) for the active site, although the reaction rate at saturated substrate concentration is significantly higher with II than with I. The properties of the amido and the noncyclic amino analogues are discussed with available data from chemotaxis of the cellular slime moulds. Furthermore data of the respective methylene cyclic derivatives are used for a more comprehensive comparison. The above is interpreted in terms of the electronic features of the substitutions and of the changes in bond distances or angles upon replacement of O by NH or CH2 in the cyclic phosphate ring (obtained from X-ray work).  相似文献   

6.
The synthesis of some branched-chain-sugar nucleoside analogues.   总被引:1,自引:1,他引:0       下载免费PDF全文
1-(2,3-Epoxy-5-O-trityl-beta-D-lyxofuranosyl)uracil was treated with a number of carbon nucleophiles. Ethynyl lithium gave 3'-deoxy-3'-ethynyl-5'-O-trityl-ara-uridine, which was reduced to the corresponding 3'-ethenyl compound. Sodium cyanide gave 3'-cyano-3'-deoxy-5'-O-trityl-ara-uridine which upon alkaline hydrolysis gave the corresponding 3'-carboxamido compound. 1,3-Dithian-2-yl lithium gave 3'-deoxy-3'-(1,3-dithian-2-yl)-5'-O-trityl-ara-uridine. The trityl group was removed from each of these compounds by mild acidic hydrolysis. Treatment of 2 with 0.1M H2sO4 and mercury (II) acetate afforded 3'-acetyl-3'-deoxy-ara-uridine which upon reduction with NaBH4 gave 3'-deoxy-3'-(1-hydroxyethan-1-yl)-ara-uridine. Acetylation of 6 yielded 5'-O-acetyl-3'-acetyl-2',3'-didehydro-2',3'-dideoxyuridine which upon reduction with NaBH4 produced a mixture of 5'-O-acetyl-2',3'-didehydro-2',3'-dideoxy-3'-(1-hydroxyethan -1-yl)uridine and 1-(R)[5-(S)-acetoxymethyl-4-(1-hydroxyethan-1-yl)-tetrahydrofuran- 2-yl]- uracil. Reduction of 14 with Raney nickel followed by removal of the trityl group gave 3'-deoxy-3'-methyl-ara-uridine.  相似文献   

7.
Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.  相似文献   

8.
S-Adenosylhomocysteine hydrolase (AdoHcy-nase) is a key enzyme in transmethylation reactions. The objective of the present study was to examine the potential antiretroviral activities of novel mechanism-based irreversible AdoHcy-nase inhibitors. (Z)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (ZDDFA), (E)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (EDDFA), (Z)-4',5'-didehydro-5'-deoxy-5'-chloroadenosine (ZDDCA) and 5'-deoxy-5'-acetylenic adenosine (DAA) inhibited AdoHcy-nase activity with Ki values of 0.55, 1.04, greater than 10.0 and 3.30 microM, respectively. These four compounds were tested for antiviral activity in vitro against Moloney leukemia virus (MoLV) in the XC-plaque assay. MoLV replication in murine fibroblasts (SC-1) was inhibited by ZDDFA, EDDFA and DAA with IC50 values of 0.05, 0.25 and 3.30 micrograms/ml, respectively. ZDDCA did not inhibit MoLV infection at the concentrations tested. Antiviral activity correlated with the ability of the individual compounds to maintain sustained elevations in intracellular S-adenosylhomocysteine (AdoHcy) concentrations in the SC-1 cells. ZDDFA, the most potent inhibitor of AdoHcy-nase and MoLV was also the most active in maintaining sustained elevations in intracellular AdoHcy levels. The antiviral activity of ZDDFA was also examined in murine C3H1OT1/2 fibroblasts which constitutively produce MoLV. Pretreatment with ZDDFA (1.0 microgram/ml) for 24 hr inhibited virus production by 88%. Similar to the SC-1 cells, and concomitant with enzyme inhibition, there was a 300-fold increase in AdoHcy levels in ZDDFA (1.0 microgram/ml) treated C3H1OT1/2 cells. Incorporation of a [3H]methyl group from tritiated S-adenosylmethionine into total RNA in C3H1OT1/2 cells was inhibited by ZDDFA without affecting cell viability. These results suggest that mechanism-based inhibitors of AdoHcy-nase, such as ZDDFA, may have potential as antiretroviral agents.  相似文献   

9.
The synthesis of new 3'-deoxy-3'-[4-(pyrimidin-1-yl)methyl-1,2,3-triazol-1-yl]-thymidine 6a-f, from 3'-azido-3'-deoxy-5'-O-monomethoxytrityl-thymidine is described. The key step is the 1,3-dipolar cycloaddition between the azido group of the protected AZT 3 and N-1-propargylpyrimidine derivatives 2a-f. All new derivatives 6a-f were evaluated for their inhibitory effects against the replication of HIV-1 (IIIB), HIV-2 (ROD). No marked activity was found.  相似文献   

10.
The synthesis of 5'-deoxy-5'-chlorothymidine-3'-(4-nitrophenyl)phosphate (5) and 5'-deoxy-5'-chlorothymidine-3'-(4-nitrophenyl)phosphorothioate (6) via corresponding phosphoranilidodiester intermediate is described. The affinity of 5 and 6 towards SPDE in comparison with thymidine-3'-(4-nitrophenyl)phosphate is tested. These findings reveal that the presence of 5'-hydroxyl function in the substrate is not necessary for hydrolytic action of this enzyme.  相似文献   

11.
Condensation of 3'-deoxy-3-deazaadenosine, 3'-deoxy-7-deazaadenosine and 3'-deoxyadenosine with N,N'-bis-trifluoroacetyl-L-homocystine dimethyl ester and subsequent deprotection of the resulting N-trifluoroacetyl-S-3'-deoxyadenosyl-L-homocysteine analogues afforded S-3'-deoxy-3-deazaadenosyl-L-homocysteine, S-3'-deoxy-7-deazaadenosyl-L-homocysteine and S-3'-deoxyadenosyl-L-homocysteine respectively. 3'-Deoxy-3-deazaadenosine and 3'-deoxy-7-deazaadenosine were prepared by transformation of the corresponding ribonucleosides with 2-acetoxyisobutyryl bromide. 3'-Deoxy-7-deazaadenosine and 3'-deoxyadenosine were also converted into their 5'-chloro-3',5'-dideoxy derivatives which in turn were condensed with L-homocysteine sodium salt to give S-3'-deoxy-7-deazaadenosyl-L-homocysteine and S-3'-deoxyadenosyl-L-homocysteine which were identical with those synthesized by condensation of the protected L-homocystine with the 3'-deoxynucleosides.  相似文献   

12.
In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP). With dCK and ATP1, products were shown to be 5'-phosphates. With dCK, donor properties of the analogues were dependent on the nature of the acceptor, as with natural 5'-triphosphate donors. With dCK (dCyd as acceptor), Km and Vmax for the two 2'(3')-deoxyadenosine-3'(2')-triphosphates are similar to those for ATP. With dGK, Km values are higher than for ATP, while Vmax values are comparable. Kinetic studies further demonstrated Michaelis-Menten (non-cooperative) or cooperative kinetics, dependent on the enzyme employed and the nature of the donor. The physiological significance, if any, of the foregoing remains to be elucidated. The overall results are, on the other hand, highly relevant to studies on the modes of interaction of nucleoside kinases with donors and acceptors; and, in particular, to interpretations of the recently reported crystal structures of dGK with bound ATP, of dNK with bound dCyd, and associated modeling studies.  相似文献   

13.
2,6-di-O-benzyl- (9), 2-O-benzyl-3,4-O-isopropylidene- (19), and 2-O-benzyl-6-O-m-chlorobenzoyl-L-arabino-hexos-5-ulose (20) have been prepared using 4'-deoxy-4'-eno- and 6'-deoxy-5'-eno lactose dimethyl acetal derivatives 7 and 14 as key intermediates. The synthesis of enol ethers 7 and 14 has been performed with good yields by base-promoted elimination of acetone or p-toluenesulfonic acid from 2',6'-di-O-benzyl-, and 6'-O-p-toluenesulfonyl-2,3:5,6:3',4'-tri-O-isopropylidenelactose dimethyl acetal, respectively. The epoxidation with MCPBA of 7 and 14 in methanol or dichloromethane furnishes C-5'-methoxy and C-5'-m-chlorobenzoyloxy derivatives, easily transformed with good yields into L-arabino 5-ketoaldohexoses 9, 19 and 20.  相似文献   

14.
Di-O-glycinoyl curcumin (I), di-O-glycinoyl-C4-glycyl-curcumin (II), 5'-deoxy-5'-curcuminyl thymidine (5'-cur-T) (III) and 2'-deoxy-2'-curcuminyl uridine (2'-cur-U) (IV) have been synthesized and characeterised by elemental analysis & 1H NMR. The antibacterial activities of these four bioconjugates has been tested particularly for multiresistant micro-organisms. Best results are shown by I & IV. These bioconjugates serve dual purpose of systemic delivery as well as therapeutic agents against viral diseases.  相似文献   

15.
In the present study curcumin bioconjugates, viz. di-O-glycinoylcurcumin (I), di-O-glycinoyl-C(4)-glycylcurcumin (II), 5'-deoxy-5'-curcuminylthymidine (5'-cur-T) (IV), and 2'-deoxy-2'-curcuminyluridine (2'-cur-U) (V) have been synthesized and characterized by elemental analysis and (1)H NMR. The turmeric peptide (Tp) was isolated from the aqueous turmeric extract of the turmeric rhizome. The antibacterial activity of these four bioconjugates and also of the turmeric peptide and sodium salt of curcumin (III) have been tested particularly for beta-lactamase-producing microorganisms.  相似文献   

16.
2'-Deoxy-2'-methylene-6-azauridine (5) and 2'-deoxy-2'-methylene-6-azacytidine (8) have been synthesized via a multi-step procedure from 6-azauridine. 2'-Deoxy-2'-methylene-5-azacytidine (14a) and 2'-deoxy-2'-methylene-3-deazaguanosine (19a) and their corresponding alpha-anomers (14b and 19b) have been synthesized by the transglycosylation of 3',5'-O-(1,1,3,3- tetraisopropyldisiloxane-1,3-diyl)-2'-deoxy-2'-methyleneu ridine (12) with silylated 5-azacytosine and silylated N2-palmitoyl-3-deazaguanine, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by separation of the isomers and deprotection of the blocking groups. These compounds were tested for cytotoxicity against B16F10, L1210, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1, HSV-1, and HSV-2.  相似文献   

17.
The protected analogue of 2-amnio-6-chloropurine arabinoside (3b) was subjected to reaction with diethylaminosulfur trifluoride (DAST) and subsequently treated with NaOAc in Ac2O/AcOH to give N2, O3', O5'-triacetyl-2'-deoxy-2'-fluoroguanosine (5a). After deacetylation of the sugar moiety and protection of 5'-OH by a 4,4'-dimethoxytrityl group, this nucleoside component was converted to 2'-deoxy-2'-fluoroguanyl-(3',5')-guanosine (6c, GfpG).  相似文献   

18.
The thioamide derivatives 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-[(2-methyl-1-thioxo- propyl)amino]thymidine 1 and 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-((6-([(9H-(fluo-ren-9- ylmethoxy)carbonyl]-amino)-1-thioxohexyl)amino) thymidine 2 were synthesized by regioselective thionation of their corresponding amides 7 and 8 with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent). The thioamides were converted into the corresponding 5'-triphosphates 3 and 4. Compound 3 was chosen for DNA sequencing experiments and 4 was further labelled with fluorescein.  相似文献   

19.
2,2'-Anhydro-3'-deoxy-5-ethyluridine, a new pyrimidine nucleoside analog, has been examined in terms of its binding potency to uridine phosphorylase, and its conformation in solution (NMR) was studied. 2,2'-Anhydro-3'-deoxy-5-ethyluridine has a Ki value of 3.4 microM for uridine phosphorylase from rat intestinal mucosa. This value is approximately one order of magnitude lower than the Km for uridine (22 microM), the natural substrate. The presence of the 3'-OH group (in the ribo-configuration) on pyrimidine nucleoside analogs may not be considered a prerequisite for the binding to uridine phosphorylase; however, it enhances the binding in the case of flexible ligands cooperating in the process of conformation change toward a more favorable enzyme-ligand interaction. The presence of the 3'-OH group in pyrimidine nucleosides seems to be essential if the molecule is to become a substrate.  相似文献   

20.
A versatile method for the synthesis of 5'-deoxy-8,5'-cycloadenosine, a conformationally-fixed "anti" type of adenosine, was presented. Irradiation of 2', 3'-O-isopropylidene-5'-deoxy-5'-phenylthioadenosine with 60W Hg vapor lamp afforded 2',3'-O-isopropylidene-5'-deoxy-8,5'-cycloadenosine in high yield. The use of other 5'-alkylthio derivatives also gave the cycloadenosine, though the yields were rather poor. Deacetonation of the cyclocompound with 0.1N HCl gave 5'-deoxy-8,5'-cycloadenosine. The cycloinosine derivative was similarly prepared. The nmr, mass and CD spectra of 5'-deoxy-8,5'-cycloadenosine were given and discussed with the previously reported results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号