首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Xylella fastidiosa Wells is a bacterial pathogen that causes a variety of plant diseases, including Pierce's disease (PD) of grapevine, almond leaf scorch, alfalfa dwarf, citrus variegated chlorosis, and oleander leaf scorch (OLS). Numerous strains of this pathogen have been genetically characterized, and several different strains occur in the United States. The dominant vector in southern California is the glassy-winged sharpshooter, Homalodisca coagulata (Say) (Hemiptera: Cicadellidae). The high mobility of this insect, and its use of large numbers of host plant species, provides this vector with ample exposure to multiple strains of X. fastidiosa during its lifetime. To learn more about the ability of this vector to acquire, retain, and transmit multiple strains of the pathogen, we developed a polymerase chain reaction (PCR)-based method to detect and differentiate strains of X. fastidiosa present in individual glassy-winged sharpshooter adults. Insects were sequentially exposed to plants infected with a PD strain in grapevine and an OLS strain in oleander. After sequential exposure, a few insects tested positive for both strains (7%); however, in most cases individuals tested positive for only one strain (29% PD, 41% OLS). In transmission studies, individual adults transmitted either the PD or OLS strain of the pathogen at a rate (39%) similar to that previously reported after exposure to a single strain, but no single individual transmitted both strains of the pathogen. PD and OLS strains of X. fastidiosa remained detectable in glassy-winged sharpshooter, even when insects were fed on a plant species that was not a host of the strain for 1 wk.  相似文献   

2.
The recent spread of the plant pathogenic bacterium Xylclla fastidiosa Wells et al. by an invasive vector species, Homalodisca coagulata Say, in southern California has resulted in new epidemics of Pierce's disease of grapevine. Our goal is to develop an efficient method to detect low titers of X. fastidiosa in H. coagulata that is amenable to large sample sizes for epidemiological studies. Detection of the plant pathogenic bacterium X. fastidiosa in its insect vector is complicated by low titers of bacteria, difficulty in releasing it from the insect mouthparts and foregut, and the presence of substances in the insect that inhibit polymerase chain reaction (PCr). To select the optimal protocol for DNA extraction to be used with PCR, we compared three standard methods and 11 commercially available kits for relative efficiency of X. fastidiosa DNA extraction in the presence of insect tissue. All of the protocols tested were proficient at extracting DNA from pure bacterial culture (1 x 10(5) cells), and all but one protocol successfully extracted sufficient bacterial DNA in the presence of insect tissue. Three DNA extraction techniques, immunomagnetic separation, the DNeasy Tissue kit (Qiagen, Hercules, CA), and Genomic DNA Purification kit (Fermentus, Hanover, MD), were compared more closely using a dilution series of X. fastidiosa (5000-0 cells) with and without insect tissue present. The DNeasy Tissue kit was the best kit tested, allowing detection of 5 x 10(3) X. fastidiosa cells with an insect head background.  相似文献   

3.
Xylella fastidiosa is a plant pathogen that threatens a US$ 4.6 billion worldwide wine and citrus industry. Monitoring its presence and distribution in plants and vectors is crucial for designing control strategies, as well as for understanding its ecological role and fate. We developed two fluorescent oligonucleotide probes complementary to different regions of the 16S rRNA gene of X. fastidiosa. The specificity of the newly designed probes S-S-X.fas-0067-a-A-18 and S-S-X.fas-1439-a-A-18 was demonstrated using fluorescence in situ hybridization (FISH) for 12 Xylella isolates, 15 closely related microorganisms and three plant endophytes. These probes were used to detect and quantify X. fastidiosa in plant sap (average value of 2.9 +/- 0.3 x 10(6) cells ml(-1)) from three different citrus orchards. In a second experiment, cells were quantified in honeydew (2.2 +/- 0.2 x 10(4) cells ml(-1)) collected from the insect vector Bucephalogonia xanthophis during the acquisition access period on an infected plant. The number of pathogen cells retained or digested by the insect is 10,000 times greater than the estimated minimum value to ensure an efficient transmission. Polymerase chain reaction (PCR) amplification using specific primers with plant sap and honeydew samples, followed by sequencing, confirmed the presence of the plant pathogen. This is the first demonstration of FISH being used for environmental samples, such as plant sap and insect honeydew, to estimate the abundance of a plant pathogen during infection.  相似文献   

4.
A sensitive and specific assay for detecting Xylella fastidiosa in potential insect vectors was developed. This assay involves immunomagnetic separation of the bacteria from the insect, followed by a two-step, nested polymerase chain reaction (PCR) amplification using previously developed oligonucleotide primers specific to X. fastidiosa . A total of 347 leafhoppers representing 16 species were captured and sampled from American elm ( Ulmus americana L.) trees growing in a nursery where bacterial leaf scorch caused by X. fastidiosa occurs. Two of these leafhopper species, Graphocephala coccinea and G. versuta , regularly tested positive for X. fastidiosa using this technique. These insects are therefore potential vectors of X. fastidiosa . Using immunocapture and nested PCR, it was possible to detect as few as five bacteria per sample.  相似文献   

5.
Pierce's disease, a lethal disease of grapevine, is caused by Xylella fastidiosa, a gram-negative, xylem-limited bacterium that is transmitted from plant to plant by xylem-feeding insects. Strains of X. fastidiosa also have been associated with diseases that cause tremendous losses in many other economically important plants, including citrus. Although the complete genome sequence of X. fastidiosa has recently been determined, the inability to transform or produce transposon mutants of X. fastidiosa has been a major impediment to understanding pathogen-, plant-, and insect-vector interactions. We evaluated the ability of four different suicide vectors carrying either Tn5 or Tn10 transposons as well as a preformed Tn5 transposase-transposon synaptic complex (transposome) to transpose X. fastidiosa. The four suicide vectors failed to produce any detectable transposition events. Electroporation of transposomes, however, yielded 6 x 10(3) and 4 x 10(3) Tn5 mutants per microg of DNA in two different grapevine strains of X. fastidiosa. Molecular analysis showed that the transposition insertions were single, independent, stable events. Sequence analysis of the Tn5 insertion sites indicated that the transpositions occur randomly in the X. fastidiosa genome. Transposome-mediated mutagenesis should facilitate the identification of X. fastidiosa genes that mediate plant pathogenicity and insect transmission.  相似文献   

6.
Homalodisca coagulata Say (Hemiptera: Cicadellidae) is a major agronomic pest because it transmits Xylella fastidiosa (Wells), the bacterium that causes Pierce's disease of grapevine. The ability to easily detect X. fastidiosa in populations of H. coagulata facilitates epidemiological studies and development of a monitoring program supporting disease management. Such a program depends on a detection protocol that is rapid, reproducible, and amenable to large sample sizes, while remaining sensitive enough to detect low amounts of pathogen DNA. In this study, we developed an improved method to speed DNA extraction by implementing a simple vacuum step that replaces labor- and time-intensive maceration of tissue samples and that is compatible with manufactured DNA extraction kits. Additionally, we have developed a SYBR Green-based real-time (RT)-polymerase chain reaction (PCR) system, which uses traditional PCR primers that are relatively inexpensive and effective. Using this extraction/RT-PCR system, we found no statistically significant differences in the detection of X. fastidiosa among samples that were either immediately extracted or stored dry or in mineral oil for 10 d at -4 degrees C. In further testing, we found no significant reduction in detection capabilities for X. fastidiosa-fed H. coagulata left in the sun on yellow sticky cards for up to 6 d. Therefore, we recommend a field-based detection system that includes recovery of H. coagulata from sticky traps for up to 6 d after trapping, subsequent freezing of samples for as long as 10 d before vacuum extraction is performed, and detection of the bacterium by SYBR Green-based RT-PCR.  相似文献   

7.
Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose.  相似文献   

8.
Successful infection of the plant pathogenic bacterium Xylella fastidiosa (Wells) from an infected plant to a new host involves three main steps: 1) acquisition of the bacterium by a vector; 2) inoculation of a noninfected host plant by the vector; and 3) establishment of sufficient titers of X. fastidiosa in the host plant to sustain a chronic infection. Understanding the basic biology of the transmission process is a key to limiting the spread of plant diseases induced by X. fasdidiosa and reducing agricultural losses, especially those experienced in California since the introduction of a new vector, Homalodisca vitripennis (Germar) (Hemiptera, Cicadellidae) (formerly H. coagulata Say), the glassy-winged sharpshooter. In this study, H. vitripennis adults that acquired X. fastidiosa were allowed access to chrysanthemum plant cuttings for 30, 60, 90, or 120 min. The numbers of X. fastidiosa acquired (i.e., cells present in the insect foregut) and the number inoculated to the plant cuttings were separately determined using quantitative real-time polymerase chain reaction (PCR). In addition, the number of times glassy-winged sharpshooter stylets probed plant cuttings and the amount of time glassy-winged sharpshooter spent actively ingesting were monitored using video surveillance. Linear regression did not indicate a relationship between the number of X. fastidiosa cells inoculated into the plant cutting and either the titer of pathogen present in the insect or amount of time spent ingesting per probe. However, the number of probes significantly influenced the number of X. fastidiosa cells inoculated. Due to the highly variable nature of transmission, our model could not account for all observed variation as indicated by low R2 values. However, our results suggest that the mechanism of transmission is dependent on probing behaviors more than ingestion duration.  相似文献   

9.
Xylella fastidiosa, the causal agent of almond leaf scorch disease (ALSD), is currently re-emerging as a serious concern in California. Efficient pathogen detection is critical for ALSD epidemiological studies, particularly when a large sample size is involved. We here report a PCR procedure to detect X. fastidiosa directly from infected almond tissue without the laborious DNA extraction. Plant samples were prepared by freeze-drying and pulverized. Appropriate dilutions of the pulverized freeze-dried tissue (PFT) were determined to minimize the effect of enzyme inhibitors from plant tissue and retain PCR detection of X. fastdiosa cells at a single digit number level. This PFT-PCR procedure was evaluated by comparing to the in vitro cultivation method using 102 symptomatic samples and resulted in a predictive value of 90.8%. PFT-PCR was further applied to monitor the seasonal occurrence of X. fastidiosa from four selected almond trees in two orchards in 2005. The results matched with those of the cultivation method at 92.3%. Considering the simplicity and reliability, we conclude that PFT-PCR is a valuable option for high throughput rapid detection of X. fastidiosa.  相似文献   

10.
Procedures utilizing Chelex 100 chelating resin have been developed for extracting DNA from forensic-type samples for use with the PCR. The procedures are simple, rapid, involve no organic solvents and do not require multiple tube transfers for most types of samples. The extraction of DNA from semen and very small bloodstains using Chelex 100 is as efficient or more efficient than using proteinase K and phenol-chloroform extraction. DNA extracted from bloodstains seems less prone to contain PCR inhibitors when prepared by this method. The Chelex method has been used with amplification and typing at the HLA DQ alpha locus to obtain the DQ alpha genotypes of many different types of samples, including whole blood, bloodstains, seminal stains, buccal swabs, hair and post-coital samples. The results of a concordance study are presented in which the DQ alpha genotypes of 84 samples prepared using Chelex or using conventional phenol-chloroform extraction are compared. The genotypes obtained using the two different extraction methods were identical for all samples tested.  相似文献   

11.
Climate, particularly environmental temperature, frequently plays an important role in disease epidemiology. This study investigated the role of environmental temperature on transmission of the generalist plant pathogen Xylella fastidiosa by its leafhopper vectors. In this system temperature is known to influence both vector performance and feeding rate, yet the implications for pathogen transmission have not been documented. Experiments were conducted over a range of temperatures to document effects on transmission efficiency of the California native Graphocephala atropunctata (blue–green sharpshooter) and the invasive Homalodisca vitripennis (glassy-winged sharpshooter). Inoculation efficiency of H. vitripennis was positively related to temperature. Graphocephala atropunctata mortality and transmission responded non-linearly to temperature, with the highest rates of both at the highest temperature. The experiment also evaluated whether differences in inoculum supply contributed to plant infection level using quantitative PCR. Although total X. fastidiosa population within G. atropunctata was not related to plant infection, the number of infectious vectors was a strong predictor of plant infection level–suggesting that the number of inoculation events is important in the development of systemic infection of X. fastidiosa in grapevines. These results, along with existing evidence from the literature, point to wide-ranging impacts of climate on the epidemiology of X. fastidiosa diseases.  相似文献   

12.
AIMS: This paper describes a quick, reproducible, sensitive method for baculoviral DNA extraction, purification and detection from freshwater and forest litter environments. METHODS AND RESULTS: The extraction protocol utilizes enzymatic and chemical lysis and physical disruption. To assess the efficiency of the extraction and purification protocol, PCR was used to detect a 530 bp DNA fragment from the genome of a genetically-modified baculovirus, Choristoneura fumiferana NPVegt-/lacZ+. The detection limit of PCR amplification was routinely about 4.1 x 102 occlusion bodies (OBs) 450 microl-1 lake water. Template DNA from the detritus and forest litter samples required 100-fold dilutions before use in PCR reactions. The detection limits for detritus and forest litter samples were routinely about 7.41 x 103 and 2.08 x 104 OBs 0.5 g-1 dry weight, respectively. CONCLUSION: The DNA extraction and purification methodology is reproducible, sensitive and can be used in lieu of, or in conjunction with, insect bioassays. SIGNIFICANCE AND IMPACT OF THE STUDY: The DNA extraction and purification protocol described in this paper will facilitate risk assessment and ecological studies of both wild-type and genetically-modified baculoviruses.  相似文献   

13.
Xylella fastidiosa Wells et al., a gram-negative and xylem limited bacterium, causes significative economic on several crops, such as the leaf scorch in coffee. It is transmitted by xylem feeding insects and four sharpshooters species have been reported as vectors of X. fastidiosa in coffee. The objective of this study was to determine the natural infectivity of X. fastidiosa in five species of sharpshooters from coffee trees: Acrogonia citrina Marucci & Cavichioli, Bucephalogonia xanthophis (Berg), Dilobopterus costalimai Young, Oncometopia facialis (Signoret) and Sonesimia grossa (Signoret). Samples were collected from coffee plantations in five counties of the North and Northwest regions of the State of Parana, Brazil, from October 1998 through November 2001. A total of 806 samples containing three to five insects were examined for the presence of X. fastidiosa by using PCR and nested PCR tests. X. fastidiosa was present in samples of all five species of sharpshooters collected in the two coffee regions. The average level of natural infectivity potential was 30.4%. However, this natural infectivity ranged from 2.2% for O. facialis to 68.8% for A. citrina. Sharpshooters collected in the spring tended to have lower natural infectivity of X. fastidiosa as compared to those collected in other seasons. The results obtained showed the high potential of dissemination of X. fastidiosa by different insect vectors in coffee trees in Parana.  相似文献   

14.
Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis disease in sweet orange. There is evidence that X. fastidiosa interacts with endophytic bacteria present in the xylem of sweet orange, and that these interactions, particularly with Methylobacterium mesophilicum, may affect disease progress. However, these interactions cannot be evaluated in detail until efficient methods for detection and enumeration of these bacteria in planta are developed. We have previously developed standard and quantitative PCR-based assays specific for X. fastidiosa using the LightCycler system [Li, W.B., Pria Jr., L.P.M.W.D., X. Qin, and J.S. Hartung, 2003.Presence of Xylella fastidiosa in sweet orange fruit and seeds and its transmission to seedlings. Phytopathology 93:953-958.], and now report the development of both standard and quantitative PCR assays for M. mesophilicum. The assays are specific for M. mesophilicum and do not amplify DNA from other species of Methylobacterium or other bacteria commonly associated with citrus or plant tissue. Other bacteria tested included Curtobacterium flaccumfaciens, Pantoea agglomerans, Enterobacter cloacae, Bacillus sp., X. fastidiosa, Xanthomonas axonopodis pv. citri, and Candidatus Liberibacter asiaticus. We have demonstrated that with these methods we can quantitatively monitor the colonization of xylem by M. mesophilicum during the course of disease development in plants artificially inoculated with both bacteria.  相似文献   

15.
AIMS: To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). METHODS AND RESULTS: The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. CONCLUSIONS: The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.  相似文献   

16.
Infection of plants by pathogens can influence their attractiveness and suitability to insect vectors and other herbivores. Here we examined the effects of Citrus sinensis (L.) Osbeck (Rutaceae) infection by the bacterium Xylella fastidiosa, which causes citrus variegated chlorosis (CVC), on the feeding preferences of two sharpshooter vectors, Dilobopterus costalimai Young and Oncometopia facialis (Signoret) (Homoptera: Cicadellidae). Experiments were performed inside observation chambers, in which a healthy plant and an infected one (with or without CVC symptoms) were supplied to a group of 40 sharpshooters. The number of insects that selected each treatment was recorded at several time intervals in 48 h. In another experiment, the ingestion rate on healthy and infected (symptomatic or not) plants was evaluated by measuring the liquid excretion of sharpshooters that were confined on branches of each plant for 72 h. Both sharpshooter species preferred healthy plants to those with CVC symptoms. However, O. facialis did not discriminate between healthy citrus and symptomless infected plants. Feeding by D. costalimai was markedly reduced when confined on CVC‐symptomatic plants, but not on asymptomatic infected ones. The ingestion rate by O. facialis was not affected by the presence of CVC symptoms. The results suggest that citrus trees with early (asymptomatic) infections by X. fastidiosa may be more effective as inoculum sources for CVC spread by insect vectors than those with advanced symptoms.  相似文献   

17.
AIMS: The aim of this study was to evaluate the diversity of Xylella fastidiosa isolated from citrus trees affected by Citrus Variegated Chlorosis (CVC). METHODS AND RESULTS: The antibiotic susceptibility by agar disc diffusion and minimum inhibitory concentration (MIC) methods was observed for all drug evaluated, except for penicillin-G. Genetic diversity by RAPD analysis revealed three major groups (citrus, coffee and grapevine), being the citrus group more similar with the coffee group than with the grapevine group. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the possibility to use these antibiotics susceptibility as markers in the development of a cloning vector and penicillin-G could be used as a selective marker for the isolation of X. fastidiosa from citrus plants.  相似文献   

18.
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.  相似文献   

19.
Xylella fastidiosa is a vector-borne, plant-pathogenic bacterium that causes disease in citrus (citrus variegated chlorosis [CVC]) and coffee (coffee leaf scorch [CLS]) plants in Brazil. CVC and CLS occur sympatrically and share leafhopper vectors; thus, determining whether X. fastidiosa isolates can be dispersed from one crop to another and cause disease is of epidemiological importance. We sought to clarify the genetic and biological relationships between CVC- and CLS-causing X. fastidiosa isolates. We used cross-inoculation bioassays and microsatellite and multilocus sequence typing (MLST) approaches to determine the host range and genetic structure of 26 CVC and 20 CLS isolates collected from different regions in Brazil. Our results show that citrus and coffee X. fastidiosa isolates are biologically distinct. Cross-inoculation tests showed that isolates causing CVC and CLS in the field were able to colonize citrus and coffee plants, respectively, but not the other host, indicating biological isolation between the strains. The microsatellite analysis separated most X. fastidiosa populations tested on the basis of the host plant from which they were isolated. However, recombination among isolates was detected and a lack of congruency among phylogenetic trees was observed for the loci used in the MLST scheme. Altogether, our study indicates that CVC and CLS are caused by two biologically distinct strains of X. fastidiosa that have diverged but are genetically homogenized by frequent recombination.  相似文献   

20.
Symbiotic control is a new strategy being investigated to prevent the spread of insect-transmitted pathogens by reducing vector competence. We are developing this strategy to reduce the spread of Xylella fastidiosa by Homalodisca vitripennis (Germar) [formerly Homalodisca coagulata (Say)] (Hemiptera: Cicadellidae), the glassy-winged sharpshooter. In this study, the fate of a transformed symbiotic bacterium, Alcaligenes xylosoxidans variety denitriicans (S1Axd), in the foregut of glassy-winged sharpshooter when fed on citrus (Citrus spp.) and grape (Vitris spp.) was assessed. TaqMan-based quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify bacterial cells remaining in the foregut at 0, 2, 4, 9, and 12 d after acquisition. S1Axd titer dropped rapidly by 2 d after acquisition, but in spite of this, at end of the 12-d experimental period, 45 and 38% of the glassy-winged sharpshooters retained the transformed bacteria, when fed on grape and citrus, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号