首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huang W  Niu H  Li Z  He Y  Gong W  Gong G 《Bioresource technology》2008,99(4):769-775
Aspergillus oryzae was co-cultured with Trichoderma reesei using acorn cups extract containing up to 62% ellagitannins as substrate to produce ellagic acid with relatively high levels of ellagitannin acyl hydrolase, cellulase and xylanase. Ellagitannins concentration, initial pH, T. reesei and A. oryzae during the fermentation were identified as important process parameters effecting ellagic acid accumulation and the enzymes syntheses. These parameters were optimized by uniformity design to determine the optimum condition for ellagic acid production. Under optimum operational condition, ellagic acid yield could be arrived at 24%, when the fermentation run lasted 96h with an initial pH of 4.5, an ellagitannins concentration of 4gl(-1), T. reesei of 3ml and A. oryzae of 3ml. Meanwhile, it was found that the three enzymes activities correlated very well with ellagic acid yield, resulting in model with high coefficient of determination (R(2)=0.98). The results indicate that the mixed culture of T. reesei and A. oryzae is an effective approach to produce an enzyme system of degrading ellagitannins for ellagic acid production.  相似文献   

2.
The individual effect of two different enzymes-protease and cellulase-on oil and protein extraction yields combined with other process parameters-enzyme concentration, time of hydrolysis, particle size and solid-to-liquid ratio-was evaluated by Response Surface Methodology. The selection of the enzymes for the study was based on preliminary experiments that showed higher increments in the extraction yield with the use of the two enzymes when compared to hemicellulase and pectinase. The levels of the quantitative parameters studied were: i) enzyme concentration: 0.1, 0.45, 2 w/w %; ii) liquid-to-solid ratio: 0.05, 0.125, 0.2; iii) mean particle size: 212.5, 449.5, 855 μm; iv) time of hydrolysis: 30; 60; 120 min. Experimental data for both oil and protein extraction yields obtained with and without enzymes correlated very well with process parameters (P < 0.0001), resulting in models with high coefficient of determination for oil and protein extraction yields (r(2) = 0.9570 and r(2) = 0.9807, respectively). The use of protease resulted in significantly higher yields over the control (protein yield increased from 27.8 to 66.2%, oil yield increased from 41.8 to 58.7%) only when heat treated flour was used, or when non-heat treated flour with large particle sizes was used in the extraction. The yields of protein and oil from non-heat treated material in general decreased slightly with the use of enzymes.  相似文献   

3.
Huang W  Li Z  Niu H  Li L  Lin W  Yang J 《Bioresource technology》2008,99(9):3552-3558
Conversion of acorn fringe extract into ellagic acid production by Aspergillus oryzae and Endomyces fibuliger were investigated. The results showed that ellagic acid production was maximized when co-fermentation of the two fungi was performed at 30 degrees C and pH 5.0 with 5.7 g/l of initial substrate concentration, which were close to the optimal values for both fungi to yield an appropriate consortium of hydrolytic enzymes. Meanwhile, it was found that the co-fermentation could compensate the deficiencies in the level of polyphenol oxidase activity from pure A. oryzae and the levels of ellagitannin acyl hydrolase and beta-glucosidase activities from pure E. fibuliger, resulting in. 0.91 g/l of biomass concentration containing 1.84 g/l of ellagic acid. The research not only demonstrates that the co-fermentation is an effective approach to utilize forest byproduct for ellagic acid production, but also provides more evidences for understanding evolution of ellagic acid production with enzymes actions, which is important for process control of ellagic acid production in industrial application.  相似文献   

4.
《Process Biochemistry》2014,49(10):1595-1600
Ellagic acid is a high-value bioactive compound that is used in the food, cosmetic and pharmaceutical industries. The aim of this work was to develop a continuous system for ellagic acid production. Ellagitannase produced by solid-state fermentation and attached to polyurethane foam particles was used as a biocatalyst in a continuous bioreactor for the hydrolysis of ellagitannins from pomegranate by-product. A packed-bed reactor containing the biocatalyst (22.22 Units per gram of dry solid, U gds−1) was fed with a pomegranate ellagitannins solution (0.1%, w/v) at a flow rate of 0.27 mL min−1 at 60 °C. The bioreactor completed several biotransformations while maintaining the hydrolysis rate (60%) with a half-life of 10 continuous cycles of ellagic acid production. Volumetric productivity and ellagic acid yield were 1.09 g L−1 h−1 and 235.89 mg g−1 of pomegranate ellagitannins during the first 70 min of hydrolysis, respectively. The developed biocatalyst showed good operational and mechanical stability and may be successfully used for ellagitannin hydrolysis in a continuous system. This is the first report of high-yield continuous production of ellagic acid using an auto-immobilized enzyme.  相似文献   

5.
The individual and interactive effects of physicochemical parameters on ellagitannin acyl hydrolase activity and ellagic acid production by Aspergillus oryzae using ellagitannins from acorn fringe of oak as substrate were studied. Ellagitannins concentration, incubation time were identified as important physicochemical parameters influencing the enzyme synthesis and the production accumulation, and the substrate concentration with initial pH was determined to has an interactive effect on the enzyme synthesis, while ellagitannins concentration and initial pH with incubation time were found to have interactions on the production accumulation. Furthermore, the parameters were optimized by quadratic programming. Under optimum condition, the fermentation run lasted 84 h with 4 g L−1 ellagitannins concentration, yielding 17.7% ellagic acid. However, the maximum enzyme activity was obtained in 96 h with 5 g L−1 substrate concentration. The research demonstrated a possible way to develop an efficient approach for recovery of higher added-value product (ellagic acid) from forestry byproduct (acorn fringe of oak).  相似文献   

6.
《Process Biochemistry》2007,42(9):1291-1295
Ellagic acid production from cups extract of valonia acorns by pure and mixed cultures of Aspergillus oryzae and Trichoderma reesei was investigated. Ellagitannin acyl hydrolase and xylanase as well as cellulase during the pure and mixed cultures were also determined. The results revealed that mixed culture could produce higher ellagic acid yield (23%) than either of pure culture. And it was found that the three enzymes from mixed culture appeared synergistic effect on ellagic acid production. Statistical analysis showed that ellagic acid yield was correlated very well with the three enzymes activities, resulting in the model for ellagic acid production with high R2 value of 0.998 and significant level p < 0.004.  相似文献   

7.
This study was on the kinetics and process parameters for ultrasound-assisted extraction (UAE) of water-soluble components and polysaccharides (PS) from the dry mycelium of a medicinal fungus, Cordyceps sinensis Cs-HK1. Four process variables (factors) were evaluated at different levels, ultrasound intensity (2.44–44.1 W/cm2), temperature (40–70 °C), solid particle size (156.5–750 μm), and solid-to-liquid ratio (1/30–1/70 g/mL). The experimental data of yields versus time in most cases were fitted closely to two empirical kinetic models for solid–liquid extraction, parabolic diffusion equation (y = yo + y1t1/2) and power law (y = βtn) with high correlation coefficients (R2) of 0.95–0.99 for total extract yield, and 0.90–0.96 for PS yield. The PS yield was increased more significantly than the total extract yield with the ultrasound intensity. Reducing the particle size and increasing the extraction temperature led to a higher yield and extraction rate; increasing the solid-to-liquid ratio (or decreasing the liquid volume) increased the PS yield and extraction rate but had little influence on the total extract. Significant correlations were found between extraction rate (dy/dt) and ultrasound power density (P/V), and between extract yield (y) and energy density (Pt/V). The kinetic and process parameters are useful for rational design and efficient operation of UAE processes.  相似文献   

8.
A putative fatty acid specificity of bile salt-dependent lipases (BSDLs) has been re-investigated. The strategy was to use two evolutionally distant, homologous BSDLs (from human and cod), and to investigate their hydrolysis of different fatty acid esters at different assay conditions affecting the physicochemical phase of the substrate. Depending on assay conditions, large variations were seen in the hydrolysis rate for esters of different fatty acids. The two enzymes displayed similar fatty acid specificity patterns, with small, but significant differences that were maintained at various assay conditions. Compared to the human enzyme, the cod enzyme showed a preference for hydrolysis of long-chain polyunsaturated fatty acyl esters (up to 22 carbons in length). On the other hand, the human enzyme hydrolysed esters of shorter chain saturated fatty acids at significantly higher rates compared to the cod enzyme. Changing physicochemical factors affecting the substrate phase induced large changes in fatty acid specificity that affected both enzymes in similar manners. It is concluded that though the aliphatic chains of the fatty acids may not be recognized by the enzymes, these chains indirectly affect the conformation or interfacial availability of the carboxyl ester bond in the substrate, and the enzymes show minor specificities for variations in these structures.  相似文献   

9.
The role of particle size in carbohydrate fractionation upon pretreatment and glucan yields upon enzymatic hydrolysis was investigated at two different temperatures, to examine the possibility of pretreating under milder conditions smaller particles, in order to satisfy pilot‐scale operational constraints. Maize stover was knife‐milled through 1‐mm and 0.5‐mm screens and pretreated by soaking in aqueous ammonia pretreatment at 60 or 110°C for 6 h. Pretreated solids were analyzed for composition and a material balance calculated for glucan, xylan, and lignin. At 60°C, milling resulted in greater delignification compared to unmilled biomass. Delignification was more uniform at 110°C. Pretreated solids were washed and cellulase hydrolysis carried out at 10% w/w solids loading, with low and high enzyme loadings. Liquid samples were drawn and concentration data developed through HPLC to calculate 48‐h glucan and xylan hydrolytic yields. The differences in hydrolytic yield between milled and unmilled treatments were found to vary with pretreatment temperature and enzyme loading. The results show that while particle size impacts carbohydrate recovery and hydrolytic yield, it is less important in bioprocessing than pretreatment temperature and enzyme loading, possibly owing to the particles’ morphology rather than the size. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:134–140, 2016  相似文献   

10.
Biotransformations catalyzed by free and immobilized enzymes have been carried out in aqueous suspensions with up to 25% (w/w) precipitated substrate or product. For the kinetically controlled synthesis of N-Acetyl-Tyr-Arg-NH(2) with up to 0.8 M insoluble activated substrate N-Acetyl-TyrOEt catalyzed by alpha-chymotrypsin (EC3.4.21.1) the dipeptide yield was found to be >90%. This and the space-time yields were higher than those observed for one-phase aqueous systems and much higher than in systems where the insoluble substrate had been solubilized by addition of organic solvents. In the equilibrium controlled hydrolysis of 0.4 M D-phenylglycine-amide catalyzed by immobilized penicillin amidase (EC 3.5.1.11) the product precipitates. The enzyme immobilized in the support with the smallest pores could be reused without reduction in the rate due to precipitation in the pores. This decreases the number of immobilized enzyme molecules that can be used as biocatalysts. The latter was observed for supports with larger pores as the solubility decreases with increasing particle size. These results demonstrate that biotransformations with insoluble substrates or products using free or immobilized enzymes can be easily carried out in aqueous two-phase systems, without organic solvents, provided that the pore sizes of the supports are sufficiently small and that the rate of mass transfer from the precipitated substrate is large. The latter increases with decreasing particle size. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
本文研究了脂肪酶在己烷中催化甘油三丁酸酯与硬脂酸之间的转酯反应动力学。转酯反应分为二个连续的反应步骤:由酯生成的酰基酶复合物的水解和由酸生成的酰基酶复合物的醇解,整个反应符合乒乓反应机制,动力学参数为:K_m(酯)=3.2×10~(-2)mol/L,K_m(酸)=6.9×10~(-2)mol/L,V_m=1.7×10~(-4)mol/L·min。  相似文献   

12.
Lignocellulose is a complex substrate which requires a variety of enzymes, acting in synergy, for its complete hydrolysis. These synergistic interactions between different enzymes have been investigated in order to design optimal combinations and ratios of enzymes for different lignocellulosic substrates that have been subjected to different pretreatments. This review examines the enzymes required to degrade various components of lignocellulose and the impact of pretreatments on the lignocellulose components and the enzymes required for degradation. Many factors affect the enzymes and the optimisation of the hydrolysis process, such as enzyme ratios, substrate loadings, enzyme loadings, inhibitors, adsorption and surfactants. Consideration is also given to the calculation of degrees of synergy and yield. A model is further proposed for the optimisation of enzyme combinations based on a selection of individual or commercial enzyme mixtures. The main area for further study is the effect of and interaction between different hemicellulases on complex substrates.  相似文献   

13.
Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.  相似文献   

14.
Hydrolysis of animal manure lignocellulosics for reducing sugar production   总被引:11,自引:0,他引:11  
Converting animal manure into value-added products provides a potential alternative for treatment and disposal of such materials. Lignocellulosics are a major component of animal manure and represent an undeveloped bioresource. In this work, a process was developed for hydrolyzing manure lignocellulosics into fermentable sugars. When raw dairy manure was pre-treated with 3% sulfuric acid at 110 degrees C for 1 h, hemicellulose was completely degraded into mainly arabinose, galactose and xylose. The pretreated materials were then treated with cellulolytic enzymes, Celluclast-1.5L and Novozyme-188, to hydrolyze the cellulose. The optimal enzyme loadings were identified as 13 FPU cellulase/g substrate and 5 IU beta-glucosidase/g substrate. The optimal temperature and pH were determined to be 46 degrees C and 4.8, respectively. A substrate concentration of 50 g/l favored both glucose concentration (in hydrolysate) and glucose yield (based on per 100 g manure). It was also found that a reduced particle size of 590-mum resulted in a high glucose yield with further decreases in particle size not increasing the yield. For each particle size investigated, the addition of 2% tween-80 resulted in at least 20% improvement in glucose yield. The optimized hydrolysis process achieved a glucose yield of 11.32 g/100 g manure, which corresponded to about 40% cellulose conversion.  相似文献   

15.
BACKGROUND AND AIMS: A number of strawberry varieties were surveyed for their total ellagic acid concentration, and attempts were made to determine if ellagic acid and ascorbic acid concentrations of two strawberry cultivars could be increased by polythene reflective mulches. METHODS: After adjusting crop yields and cultivation using polythene mulches with two different PAR reflective capacities, field- and polytunnel-grown strawberries were analysed for ellagic acid and ascorbic acid concentrations by HPLC. Comparative measurements of yield and fruit quality were determined along with plant developmental changes. KEY RESULTS: Ellagic acid concentration varied widely with strawberry cultivar (60-341 microg g(-1) frozen weight), as did the ratio of conjugated ellagic acid : free ellagic acid. Also, there was significant year-to-year variation in total ellagic acid concentration with some cultivars. Mulches with different reflective capacities impacted on strawberry production; highly reflective mulches significantly increased growth and yield, the latter due to increases in fruit size and number. CONCLUSIONS: Highly reflective mulches significantly increased total concentrations of ellagic acid and ascorbic acid relative to control in fruit of different cultivars. The potential of agronomic practices to enhance the concentration and amounts of these important dietary bioactive compounds is discussed.  相似文献   

16.
Production of methyl gallate (MG), which is an important phenolic acid ester for pharmaceutical industry, was carried out by Novozym 435-catalysed transesterification of propyl gallate (PG) with methanol in a deep eutectic solvent. Reaction parameters governing substrate molar ratio, enzyme concentration, temperature and agitation rate were investigated batch-wise in choline chloride:glycerol-water binary mixture. The results were evaluated in terms of conversion of PG, yield of MG and hydrolysis of PG to gallic acid. 10% (w/w) of water was found to be favourable in the reaction medium for low hydrolysis percent. The highest conversion (17.4%) and yield (60.4%) but the lowest hydrolysis (2%) after 120?h of transesterification were found at PG/methanol molar ratio of 1:6, enzyme concentration of 40?g/L, 50?°C and 200?rpm. A kinetic model based on the Ping-Pong Bi–Bi mechanism for transesterification of PG was proposed with the assumption that there were no internal and external mass transfer resistances.  相似文献   

17.
Lipid microemulsions with various core and surface lipid compositions were prepared by co-sonication of cholesteryl esters, triolein (TO), egg phosphatidylcholine (egg PC), and cholesterol. The heterogeneous emulsion particle mixture was purified by gel filtration and particles with the size and general organization of low density lipoproteins were obtained. These lipid microemulsion particles were used for studies of the cellular metabolism of lipoprotein-derived cholesterol and cholesteryl esters as catalyzed by the enzyme acid sterol ester hydrolase (EC 3.1.1.13). The hydrolysis of cholesteryl oleate (CO) was more than twice and that of cholesteryl linoleate (CL) more than three times faster than the hydrolysis of cholesteryl stearate (CS) over the temperature range 25-39.6 degrees C. Both the synthesis and hydrolysis of cholesteryl esters were insensitive to the physical state of the microemulsion cores. The synthesis of cholesteryl esters by this enzyme was also insensitive to the ratios of cholesterol and egg PC in the microemulsion surface layers. Incorporation of triolein into the microemulsion cholesteryl ester core slightly increased the rate of cholesteryl ester synthesis. A decreasing fatty acyl chain length (C18:0 to C14:0) and an increasing degree of unsaturation (C18:0 to C18:2) enhanced the synthesis rate. It is suggested that the hydrolysis and synthesis of cholesteryl esters in microemulsions (and lipoproteins) take place only in the particle surface layer and that the rate of catalysis is directly dependent on the amount of substrate in this surface layer.  相似文献   

18.
N-Long chain acyl aminoacylase II (Enzyme II) catalyzing the hydrolysis of N-long chain acyl amino acids was purified about 2,000-fold from the cell extracts of Pseudomonas diminuta with 1.8% of activity yield. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis and the molecular weight was 220,000. Enzyme II differed from N-long chain acyl aminoacylase I (Enzyme I) in molecular weight, in substrate specificity, and in behavior toward temperature and pH. Enzyme II showed broader substrate specificity than Enzyme I and catalyzed the hydrolysis of lipoamino acids containing various amino acid residues, although Enzyme I was almost specific to the lipoamino acids containing L-glutamate. The extent of hydrolysis by Enzyme II reaction varied depending on the kinds of lipoamino acids and were: 100% for palmitoyl-L-glutamate, 91% for myristoyl-L-glutamate, 85% for lauroyl-L-glutamate, 54% for lauroyl-L-aspartate, 28% for stearoyl-L-glutamate and 17.5% for lauroyl-glycine.  相似文献   

19.
α-Amylase was immobilized on Dowex MAC-3 with 88 % yield and amyloglucosidase on Amberlite IRA-400 ion-exchange resin beads with 54 % yield by adsorption process. Immobilized enzymes were characterized to measure the kinetic parameters and optimal operational parameters. Optimum substrate concentration and temperature were higher for immobilized enzymes. The thermal stability of the enzymes enhanced after the immobilization. Immobilized enzymes were used in the hydrolysis of the natural starch at high concentration (35 % w/v). The time required for liquefaction of starch to 10 dextrose equivalent (DE) and saccharification of liquefied starch to 96 DE increased. Immobilized enzymes showed the potential for use in starch hydrolysis as done in industry.  相似文献   

20.
This study investigated the effects of fucoxanthin isolated from marine plant extracts on lipid metabolism and blood glucose concentration in high-fat diet fed C57BL/6N mice. The mice were divided into high-fat control (HFC; 20% fat, w/w), low-fucoxanthin (low-Fxn; HFC + 0.05% Fxn, w/w) and high-fucoxanthin (high-Fxn; HFC + 0.2% Fxn, w/w) groups. Fxn supplementation significantly lowered the concentration of plasma triglyceride with a concomitant increase of fecal lipids in comparison to the HFC group. Also, the hepatic lipid contents were significantly lowered in the Fxn supplemented groups which seemed to be due to the reduced activity of the hepatic lipogenic enzymes, glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase and phosphatidate phosphohydrolase and the enhanced activity of β-oxidation. Plasma high-density lipoprotein cholesterol concentrations and its percentage were markedly elevated by Fxn supplementation. Activities of two key cholesterol regulating enzymes: 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase, were significantly suppressed by Fxn regardless of the dosage. Relative mRNA expressions of acyl-coA oxidase 1, palmitoyl (ACOX1) and peroxisome proliferators activated receptor α (PPARα) and γ (PPARγ) were significantly altered by Fxn supplementation in the liver. Fxn also lowered blood glucose and HbA1c levels along with plasma resistin and insulin concentrations. These results suggest that Fxn supplementation plays a beneficial role in not only regulating the plasma and hepatic lipids metabolism but also for blood glucose-lowering action in high-fat fed mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号