首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of avermectin B1a (AVM) with the γ-aminobutyric acid (GABA) receptor of rat brain was studied using radioactive ligand binding and tracer ion flux assays. Avermectin potentiated the binding of [3H]flunitrazepam and inhibited the binding of both [3H]muscimol and [35S]t-butylbicyclo-phosphorothionate to the GABAA receptor. Inhibition of muscimol binding by AVM suggested competitive displacement. Two kinds of 36chloride (Cl) flux were studied. The 36Cl efflux from preloaded microsacs was potentiated by AVM and was highly inhibited by the Cl-channel blocker 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS). However, it was not potentiated by GABA nor was it sensitive to the convulsants picrotoxin or bicuculline. On the other hand, 36Cl-influx measurement in a different microsac preparation of rat brain was very sensitive to GABA and other GABA-ergic drugs. Avermectin induced 36Cl influx into these microsacs in a dose–dependent manner, but to only 35% of the maximal influx induced by GABA. The AVM-induced 36Cl influx was totally blocked by bicuculline. It is suggested that AVM opens the GABAA-receptor Cl channel by binding to the GABA recognition site and acting as a partial receptor agonist, and also opens a voltage–dependent Cl channel which is totally insensitive to GABA but is very sensitive to DIDS.  相似文献   

2.
Properties of [3H] diazepam binding to rat peritoneal mast cells   总被引:6,自引:0,他引:6  
Benzodiazepine binding to rat peritoneal mast cells was investigated using [3H] diazepam as the radioactive probe. The specific binding of [3H] diazepam reaches equilibrium within 10–15 min, is saturable and is linear with cell number. Scatchard analysis of equilibrium binding indicates the existence of only one class of binding sites with a KD = 90 ± 10 nM and Bmax of 261 ± 60 fmoles/106 cells. The binding of [3H] diazepam is temperature dependent, the highest amount is bound at 0°C and shows a pH-optimum between pH 6.8 – 7.4. The binding of [3H] diazepam is reversible with t12 = 1.2 ± 0.2 min. Based on the relative potency of clonazepam and Ro5-4864 in displacing the specific [3H] diazepam binding, the binding sites in the mast cell are similar to those in the peripheral tissues like lung, liver, and kidney and are different from those in the brain. These data indicate that the mast cells have benzodiazepine binding sites which are of the peripheral type.  相似文献   

3.
Benzodiazepine receptors were labeled with [3H] diazepam following intravenous injection in rats. Binding of [3H] diazepam in vivo to rat forebrain membranes was displaceable by co-injection of clonazepam or the pharmacologically active enantiomers of two benzodiazepines, B9 and B10, but was not displaced by equal doses of the pharmacologically in-active enantiomers. Binding of [3H] diazepam invivo was bserved in kidney, liver, and abdominal muscle, but was not stereospecifically diplaced in any peripheral tissue studied. The regional distribution of benzodiazepine receptors in brain was uneven, with specific [3H] diazepam binding being highest in the cerebral cortex and lowest in the ponsmedulla. Preliminary studies of the subcellular distribution of [3H] diazepam binding demonstrated highest specific binding to synaptosomal membranes. These data demonstrate the feasibility of labeling benzodiazepine receptors in rat brain invivo.  相似文献   

4.
Binding activity for the cage convulsant [35S]-tert-butylbicyclophosphorothionate, which appears to label a site closely associated with the chloride ionophore of the GABAA/benzodiazepine receptor complex has been solubilized from rat cerebral cortex using the zwitterionic detergent CHAPS. Of several detergents screened, only CHAPS and CHAPSO were capable of solubilizing the binding activity with good recovery. The pharmacologic specificity of soluble [35S]-tert-butylbicyclophosphorothionate binding is very similar to the membrane state. In both the membrane and soluble state, [35S]-tert-butylbicyclophosphorothionate binding is enhanced by anions which support inhibitory post-synaptic potentials (“Eccles anions”), suggesting that [35S]-t-butylbicyclophosphorothionate may label chloride channels thought to be involved in these potentials. Since this solubilization procedure also preserves GABA and benzodiazepine binding and their regulation by drugs such as barbiturates, purification and isolation of the macromolecular complex including chloride channel and GABA-benzodiazepine sites may be feasible.  相似文献   

5.
The kinetics of t-[3H]butylbicycloorthobenzoate (TBOB) binding to the convulsant sites of the γ-aminobutyric acidA (GABAA) receptor-ionophore complex were examined in synaptosomal membrane preparations of rat brain. On and off rates of TBOB binding were accelerated by 1 μM GABA and decelerated by 1 μM bicuculline methochloride, a GABAA antagonist. The presence of GABA and bicuculline methochloride created rapid and slow phases of dissociation, respectively. The three groups of rate constants distinguished for the dissociation of 4 nM and 30 nM [3H]TBOB represent multiaffinity states of the convulsant sites depending on the presence of GABA or bicuculline methochloride. Apparent association rate constants do not obey the equation kapp=koff±kon [TBOB] without assuming interconvertibility of the kinetic states during binding. Avermectin B1a (AVM B1a), a chloride channel opening agent, accelerated the association and dissociation of TBOB and resulted in a biphasic effect on TBOB binding, i.e., enhancement at low concentrations (EC50, 7.8 nM) followed by displacement at high concentrations (IC50 6.3 μM) of AVM B1a. AVM B1a resulted in similar biphasic effects on t- [35S]butylbicyclophosphorothionate binding. DIDS, an isothiocyanatostilbene derivative with irreversible anion channel blocking effect, selectively inhibited basal [3H]TBOB binding (IC50 125 μM DIDS) leaving the enhancement by AVM B1a unaffected.  相似文献   

6.
Properties of [3H]diazepam binding sites on rat blood platelets   总被引:8,自引:0,他引:8  
J K Wang  T Taniguchi  S Spector 《Life sciences》1980,27(20):1881-1888
Intact rat blood platelets are shown to possess benzodiazepine binding sites of the peripheral type, binding of [3H]diazepam being strongly inhibited by Ro5-4864 (Ki = 3.6 ± 0.5 nM) but only weakly inhibited by clonazepam (Ki = 35.1 ± 18.2 μM). Binding of [3H]diazepam is specific and saturable. Scatchard analysis reveals a single class of binding sites with KD = 14.7 ± 1.0 nM and Bmax = 564 ± 75 fmoles/108 platelets. The Hill coefficient is 0.94, indicating a lack of binding site heterogeneity or negative cooperativity. Binding reaches equiliibrium at 6 min, with k+1 = 2.9 × 107 M?1 min?1, and is rapidly reversible (t12 = 2.2 min with K?1 = 0.315 min?1. KD derived from the rate constants agrees with that estimated by Scatchard analysis. KD of the crude membrane fraction of platelets is also close to that of intact platelets. Binding of [3H]diazepam is linear with platelet number (between 0.25–2 × 108 platelets), is temperature sensitive with maximum binding at 0°C, and has a broad optimal pH range between pH 5–9.  相似文献   

7.
The central actions of 1-(2-o-chlorobenzoyl-4-chlorophenyl)-5-glycylaminomethyl-3-dimethylcarbamoyl-1H-1,2,4-triazole hydrochloride dihydrate (450191-S), a potent sleep-inducing and anxiolytic drug, were re-evaluated in terms of the affinity for benzodiazepine (BZP) receptor and the activation of γ-aminobutyric acid (GABA) receptor binding.The 450191-S showed only very low capacity to displace the bindings of [3H]diazepam, [3H]β-carboline-3-carboxylate-ethylester, [3H]Rol5-1788, [3H]Ro5-4864 and [3H]naloxone to cerebral synaptic membranes. Similarly, this drug had a weak and undistinguishable affinity to both BZPtype 1 and 2 receptors determined under the presence of CL 218,872. On the other hand, 450191-S as well as its active metabolites (M-1, M-2, M-A, M-3 and M-4) showed a remarkable activating effect on the GABA receptor binding with low affinity in cerebral synaptic membranes. This enhancement of the low affinity GABA receptor binding was found to be due to the increase of affinity (Kd) but not to the change in Bmax. Furthermore, it has been found that the observed accentuation of low affinity GABA receptor binding is well-correlated with the potency of the central actions of 450191-S such as potentiation of the hypnotic action of barbiturates and muscle relaxation.These results suggest that the central actions of 450191-S may be due to, at least in part, the activation of central GABA receptor binding with low affinity. The present results also suggest that the activation of low affinity GABA receptor binding may be a better criterion than the affinity of BZP receptor for elucidating the central action of a certain type of BZP derivatives.  相似文献   

8.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

9.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

10.
The recent discovery of pharmacologically relevant, high affinity, stereospecific binding sites for the benzodiazepines in the central nervous system (CNS) has rekindled investigations concerning the mechanism of action of these drugs. It has become increasingly clear that elucidation of benzodiazepine action will provide new and important insights into the neurochemical substances of seizure activity, centrally mediated muscle relaxation and anxiety, three major actions of this class of drugs.The existence of a functional receptor for the benzodiazepines, compounds not present in vivo, suggests that endogenous substances exist that serve as natural substrates for this receptor. Furthermore, the characterization of endogenous benzodiazepine receptor ligands affords an opportunity to determine the neurochemical mechanisms underlying the pharmacologic and behavioral effects manifested by the benzodiazepines.Using receptor binding methodology to assay tissue extracts for [3H] diazepam binding inhibitory activity, putative endogenous ligands for the benzodiazepine receptor have been isolated and identified as the purine nucleosides. Compounds such as inosine and hypoxanthine exhibit competitive inhibition of [3H] diazepam binding. The low affinity purinergic inhibition of diazepam binding is consistent with their in vivo concentrations. Distinct structure-activity relationships exist for the purines with subtle structural alterations having marked effects on diazepam binding inhibitory potency. The methylxanthine stimulants, caffeine, theophylline, and theobromine, also competitively inhibit diazepam binding, suggesting that some of their actions may be mediated by the benzodiazepine receptor.The purines also have “benzodiazepine-like” pharmacologic properties, since they have been shown to antagonize pentylenetetrazol induced seizures in mice in a dose dependent manner. Neurophysiologic studies have also shown that iontophoresis of inosine on cultured mouse primary neurons produce neurotransmitter like effects. Furthermore, these effects are similar to those observed with flurazepam, a finding that provides additional evidence for the “benzodiazepine-like” properties of the purines.The preliminary studies outlined below indicate that the purines are good candidates as putative endogenous ligands for the benzodiazepine receptor and provide a foundation for future studies that concern the homeostatic mediation of seizure activity and anxiety.  相似文献   

11.
An in vivo method for labeling specific benzodiazepine (BDZ) binding sites in brain was developed using intravenously injected [3H]diazepam. Labeling of these sites is blocked by pretreatment of animals with high doses of pharmacologically active BDZs (but not by an inactive BDZ). Using this in vivo binding technique, specific BDZ binding is enhanced by pretreatment of rats with the GAB?A agonist muscimol or with amino-oxyacetic acid, which increases GABA levels in brain.  相似文献   

12.
Up to now the only drugs known to be able to inhibit the binding of benzodiazepines to rodent brain receptors are members of this chemical family.Zopiclone (RP 27 267), a new drug with a pharmacological profile similar to that of chlordiazepoxide and nitrazepam but entirely different chemically from benzodiazepines, has been tested for its ability to inhibit benzodiazepine binding. In vitro and in vivo studies have shown that zopiclone is able to inhibit the binding of [3H] diazepam and [3H] flunitrazepam to brain receptors. The potency of zopiclone is quite comparable to that of diazepam and nitrazepam in vitro and to that of chlordiazepoxide in vivo.These results confirm the pharmacological similarities existing between zopiclone and the benzodiazepines.  相似文献   

13.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

14.
Abstract: We have investigated the effect of unsaturated free fatty acids (FFAs) on the brain GABA/benzodiazepine receptor chloride channel complex from mammalian, avian, amphibian, and fish species in vitro. Unsaturated FFAs with a carbon chain length between 16 and 22 carbon atoms enhanced [3H]diazepam binding in rat brain membrane preparations, whereas the saturated analogues had no effect. The enhancement of [3H]diazepam binding by oleic acid was independent of the incubation temperature (0-30°C) of the binding assay and not additive to the enhancement by high concentrations of C1. In rat brain preparations, the stimulation of [3H]diazepam binding by oleic acid (10?4M) was independent of the ontogenetic development. Phylogenetically, large differences were found in the effect of unsaturated FFAs on [3H]diazepam and [3H]muscimol binding: In mammals and amphibians, unsaturated FFAs enhanced both [3H]-muscimol and [3H]diazepam binding to 150-250% of control binding. In 17 fish species studied, oleic acid (10?4M) stimulation of [3H]diazepam binding was weak (11 species), absent (four species), or reversed to inhibition (two species), whereas stimulation of [3H]muscimol binding was of the same magnitude as in mammals and amphibians. In 10 bird species studied, only weak enhancement of [3H]muscimol binding (110–130% of control) by oleic acid (10?4M) was found, whereas [3H]diazepam binding enhancement was similar to values in mammal species. Radiation inactivation of the receptor complex in situ from frozen rat cortex showed that the functional target size for oleic acid to stimulate [3H]flunitrazepam binding has a molecular mass of ~200,000 daltons. Our data show that unsaturated FFAs have distinct effects on membranebound GABA/benzodiazepine receptors in vitro.  相似文献   

15.
The binding of [3H]γ-aminobutyric acid to cat cerebellar membranes is reversibly inhibited in a competitive manner by pyridoxal-5′-phosphate present during the binding assay. Structural analogues of the inhibitor have no such effect. If, on the other hand, the membranes are preincubated with pyridoxal-5′-phosphate followed by the addition of sodium borohydride, a rapid, irreversible inhibition of subsequent γ-aminobutyric acid binding is observed. Since pyridoxal-5′-phosphate is known to inactivate certain enzymes by reacting with essential lysine residues, the present results suggest that such a lysine residue may be present within the γ-aminobutyric acid receptor.  相似文献   

16.
Avermectin B1a, a novel antiparasitic agent, paralyzes Ascaris suum without causing either flaccid paralysis or a hypercontraction. It reduces the lengthening of the acetylcholine-preconditioned A. suum muscle strip caused by γ-aminobutyric acid. It does not affect the contraction of the isolated muscle strip preparation caused by applying acetylcholine. However, preinjection with Avermectin B1a does significantly reduce the shortening caused by acetylcholine injection without affecting the paralysis of an intact ascarid worm. These results suggest that Avermectin B1a may act on the central nervous system of Ascaris sp. nematodes.  相似文献   

17.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

18.
P.J. Marangos  J. Patel 《Life sciences》1981,29(16):1705-1714
β-Carbolines are inhibitors of [3H] diazepam binding with the most potent inhibitor being β-carboline-3-carboxylate ethyl ester (β-CCE). In this report the binding of [3H] β-CCE to extensively washed rat forebrain membranes is characterized. [3H] ß-CCE binds with high affinity (KD = 1.4 nM) to an apparently homogenous population of benzodiazepine receptor. The rank order of potency for inhibition of [3H] ß-CCE binding by different benzodiazepines is clonazepam > diazepam > chlordiazepoxide, which is similar to that observed for inhibition of [3H] diazepam binding. In marked contrast to [3H] diazepam, the binding of [3H] ß-CCE is not modulated by GABA since concentrations of GABA as high as 10?3 M had no effect. [3H] ß-CCE is also less potent than [3H] diazepam in its interaction with the peripheral type kidney benzodiazepine receptor indicating that this ligand has a higher degree of specificity for the central brain type benzodiazepine receptor.  相似文献   

19.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

20.
The high-affinity binding site for [3H] diazepam has been solubilized from rat brain using 0.5% Lubrol-PX. Using a polyethylene glycol (PEG)-γ-globulin assay, it has been possible to demonstrate solubilization of about 60% of the binding sites in a single step. The solubilized binding site possesses a KD of 11 nM for [3H] diazepam compared to approximately 4 nM for the membrane-bound form, and binding is to a single class of sites. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Binding of [3H] diazepam is temperature dependent and higher at 4° than 37°C. Both urea and guanidine-HC1 were capable of totally inhibiting binding, and this inhibition was partly reversible; neither sulfhydryl groups nor carbohydrate moieties seem to be important for binding. γ-Aminobutyric acid which enhanced [3H] diazepam binding to membrane fractions was without effect on the solubilized binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号