首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrus is a cold-sensitive genus and most commercially important varieties of citrus are susceptible to freezes. On the other hand, Poncirus trifoliata (L.) Raf. is an interfertile Citrus relative that can tolerate temperatures as low as −26°C when fully cold acclimated. Therefore, it has been used for improving cold tolerance in cold-sensitive commercial citrus rootstock varieties and in attempts to improve scion varieties. In this study, cDNA libraries were constructed from both 2-day cold-acclimated and from non-acclimated Poncirus seedlings using a subtractive hybridization method with the objective of identifying cold-regulated genes. A total of 192 randomly picked clones, 136 from the cold-induced library and 56 from the cold-repressed library, were sequenced. The majority of these clones showed sequence homology to previously identified cold-induced and/or environmental stress-regulated genes in Arabidopsis. In addition, some of them shared homology with cold and/or environmental stress-induced genes previously identified in other herbaceous and woody perennial plants and some showed no homology with sequences in GenBank. When these 192 cDNAs were analyzed by reverse northern blot with cold-acclimated and non-acclimated probes, 92 of the cDNAs displayed significantly increased expression, ranging from 2 to 49-fold, during cold acclimation; all 92 were from the cold-induced library. Surprisingly no clones displayed significantly repressed expression in response to cold. Analysis of a number of selected genes individually in northern blots of mRNA from cold-acclimated and non-acclimated plants largely confirmed the reverse northern analysis, verifying induction of expression of selected cDNAs in response to cold. The results showed that subtractive hybridization is an efficient method for identification of cold-induced genes in plants with limited sequence information available. This study also revealed that genes induced during cold acclimation of the cold-hardy citrus relative P. trifoliata are similar to those in Arabidopsis, indicating that similar pathways may be present and activated during cold acclimation in woody perennial plants.  相似文献   

2.
We report the isolation and expression analysis of two cDNAs encoding 3-ketoacyl-acyl carrier protein synthases (KAS) that are involved in the de novo synthesis of fatty acids in plastids of perilla (Perilla frutescens L.). The cDNAs, designated PfFAB1 and PfFAB24, encoded polypeptides with high sequence identities to those of KAS I and KAS II/IV, respectively, of various plants. Genomic Southern blots revealed that there was a single PfFAB1 gene but two PfFAB24 genes in the perilla genome. Of interest is that the expression of both genes was developmentally regulated in seeds. Their mRNA expression patterns in seeds were also discussed in comparison with the profile of fatty acid accumulation.  相似文献   

3.
Thiamine or vitamin B-1, is an essential constituent of all cells since it is a cofactor for two enzyme complexes involved in the citric acid cycle, pyruvate dehydrogenase and -ketoglutarate dehydrogenase. Thiamine is synthesized by plants, but it is a dietary requirement for humans and other animals. The biosynthetic pathway for thiamine in plants has not been well characterized and none of the enzymes involved have been isolated. Here we report the cloning and characterization of two cDNAs representing members of the maize thi1 gene family encoding an enzyme of the thiamine biosynthetic pathway. This assignment was made based on sequence homology to a yeast thiamine biosynthetic gene and by functional complementation of a yeast strain in which the endogenous gene was inactivated. Using immunoblot analysis, the thi1 gene product was found to be located in a plastid membrane fraction. RNA gel blot analysis of various tissues and developmental stages indicated thi1 expression was differentially regulated in a manner consistent with what is known about thiamine synthesis in plants. This is the first report of cDNAs encoding proteins involved in thiamine biosynthesis for any plant species.  相似文献   

4.
5.
An Arabidopsis thaliana cDNA library was used to complement Saccharomyces cerevisiae pyrimidine auxotrophic mutants. Mutants in all but one (carbamylphosphate synthetase) of the six steps in the de novo pyrimidine biosynthetic pathway could be complemented. We report here the cloning, sequencing and computer analysis of two cDNAs encoding the aspartate transcarbamylase (ATCase; EC 2.1.3.2) and orotate phosphoribosyltransferase-orotidine-5-phosphate decarboxylase (OPRTase-OMP-decase; EC 2.4.2.10, EC 4.1.1.23) enzymes. These results confirm the presence in A. thaliana of a bifunctional gene whose product catalyses the last two steps of the pyrimidine biosynthetic pathway, as previously suggested by biochemical studies. The ATCase encoding cDNA sequence (PYRB gene) shows an open reading frame (ORF) of 1173 by coding for 390 amino acids. The cDNA encoding OPRTase-OMPdecase (PYRE-F gene) shows an ORF of 1431 by coding for 476 amino acids. Computer analysis of the deduced amino acid sequences of both cDNAs shows the expected high similarity with the ATCase, ornithine transcarbamylase (OTCase; EC 2.1.3.3), OPRTase and OMPdecase families. This heterospecific cloning approach increases our understanding of the genetic organization and interspecific functional conservation of the pyrimidine biosynthetic pathway and underlines its usefulness as a model for evolutionary studies.  相似文献   

6.
Silene latifolia is a dioecious plant in which sex is determined by heteromorphic sex chromosomes. In female plants, stamen development is arrested before microspore mother cells are formed. In this study, we isolated four cDNAs (SlSKP1-1 to 4) encoding ASK1-like protein as expression markers to reveal when expression levels are reduced in arrested stamens of female flowers. Expression patterns of the SlSKP1 genes were analyzed by in-situ hybridization. We use the flower development classification of Grant et al. (in Plant J 6:471–480, 1994). SlSKP1 genes were highly expressed in primary parietal cells and primary sporogenous cells that develop into microspore mother cells in male flowers. Expression levels started to be reduced in the external stamens of the female flowers when stamen development was arrested at stage 7. Although microspore mother cells could not be developed in female flowers and SlSKP1 expression may be unnecessary in arrested stamens, SlSKP1 genes were still expressed in sporogenous cells of degenerated stamens at stage 8. Parietal cells stopped differentiating earlier than sporogenous cells in arrested stamens. These results suggest that not all types of cell are arrested simultaneously at a particular stage of stamen development during stamen suppression of S. latifolia.  相似文献   

7.
Mitochondrial genes overexpressed in human and monkey B-cell non-Hodgkin lymphomas (B-NHLs) were sought via subtraction hybridization, cloning, and differential screening of the resulting cDNA libraries. The cDNAs of mitochondrial genes constituted an appreciable proportion of all lymphoma-specific cDNAs. Lymphomogenesis was associated with upregulation of a set of mitochondrial genes, which varied with lymphoma type but always included NADHIV. A possible association between upregulation of certain mitochondrial genes and cell malignant transformation is discussed.  相似文献   

8.
InArabidopsis thaliana L., accumulation of abscisic acid (ABA) began to increase 2 h after plants had been subjected to dehydration stress and reached maximum levels after 10h. Differential hybridization was used to isolate 26Arabidopsis cDNAs with gene expression induced by a 1 h dehydration treatment. The cDNA clones were classified into 16 groups based on Southern blot hybridization, and named ERD (early-responsive todehydration) clones. Partial sequencing of the cDNA clones revealed that three ERDs were identical to those of HSP cognates (Athsp70-1, Athsp81-2, and ubiquitin extension protein). Dehydration stress strongly induced the expression of genes for the three ERDs, while application of ABA, which is known to act as a signal transmitter in dehydration-stressed plants, did not significantly affect the ERD gene expression. This result suggests that these HSP cognates are preferentially responsive to dehydration stress inA. thaliana, and that signaling pathways for the expression of these genes under conditions of dehydration stress are not mainly mediated by ABA. We also discuss the possible functions of these three ERD gene products against dehydration stress.  相似文献   

9.
10.
Arbuscular mycorrhizal (AM) fungi are a multifaceted group of mutualistic symbionts that are common to terrestrial ecosystems. The interaction between AM fungi and plant roots is of environmental and agronomic importance. Understanding the molecular changes within the host plant upon AM fungal colonisation is a pre-requisite to a greater understanding of the mechanisms underlying the interaction. Differential mRNA display was conducted on leaf tissue of tomato plants colonised and non-colonised by the AM fungus Glomus mosseae and five putative differentially regulated cDNAs were identified. All cDNAs isolated shared high sequence similarity to known plant genes. Differential screening was initially used to establish whether the cDNAs were differentially expressed. Semi-quantitative RT-PCR was used to establish gene expression patterns for all five clones within leaf and root tissue of mycorrhizal and non-mycorrhizal colonised tomato plants. Differential regulation was observed for all five cDNAs. Down-regulation within the leaf tissue of mycorrhizal plants was observed for 4 out of the 5 cDNAs with an up-regulation observed only for one. Tissue specific regulation was observed for several cDNAs, with down-regulation observed in mycorrhizal leaf tissue and up-regulation observed within mycorrhizal root tissue as compared to non-mycorrhizal tissue.  相似文献   

11.
Since 1956, when exogenous uridine and cytidine were found to be necessary for the maintenance of perfused rat brain function, the co-existence of de novo synthesis, salvage pathways and removal of pyrimidine bases in the CNS has been a controversial subject. Here, we review studies on metabolites and enzymes of pyrimidine metabolism through more than 60 years. In view of known and newly-described inherited pyrimidine and purine disorders - some with complex clinical profiles of neurological impairments - we underline the necessity to investigate how the different pathways work together in the developing brain and then sustain plasticity, regeneration and neuro-transmission in the adult CNS. Experimentally, early incorporation studies in animal brain slices and homogenates with radio-labelled nucleosides or precursors demonstrated salvage activity or de novo synthesis. Later, the nucleoside transporters and organic anionic transporters underlying uptake of metabolites and anti-pyrimidine drugs in the CNS were identified. Recently, the expression of de novo enzymes in glial cells and neurons was verified using (immuno) histochemical and in-situ-hybridization techniques. Adult brain was shown to take up or produce all pyrimidine (deoxy) ribonucleosides or, after uptake and phosphorolysis of nucleosides, to make use of ribose for different purposes, including energy. More recently, non-canonical pyrimidine bases (5mC, 5hmC) have been found most notably in brain, pointing to considerable postreplicative DNA metabolism, with the need for pyrimidine-specific enzymes. Even more perspectives are emerging, with advances in genome analysis and in the manipulation of expression from the gene.  相似文献   

12.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

13.
Direct exposure of calluses of Lycium barbarum L. to an auxin-free medium can induce somatic embryogenesis. Somatic embryogenesis of Lycium barbarum L. is controlled artificially by regulating 2,4-D concentration. The total RNA that was isolated from calluses, embryonic calluses and early somatic embryos was used for analyzing differential genes expression. We obtained three cDNAs from early somatic embryogenesis which were not found in calluses. The results indicate that these cDNAs were early embryogenesis-specific cDNAs and this gene expression was induced in cultured calluses after a transfer to an auxin- free medium. A cDNA library was constructed using poly(A)+-RNA derived from early somatic embryos of Lycium barbarism L. Two full-length cDNAs were isolated from the library by differential screening. Northern blot hybridization analysis indicated that the expression of the full-length cDNA only existed in embryogenic calluses and early somatic embryos of Lycium barbarum L. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
3种锦鸡儿属植物过氧化物酶基因的克隆及表达分析   总被引:1,自引:0,他引:1  
采用同源克隆技术分离了3种锦鸡儿属植物柠条锦鸡儿(Caragana korshinskii)、小叶锦鸡儿(C.microphylla)和中间锦鸡儿(C.intermedia)的过氧化物酶(POD)基因(分别命名为CkPOD、CmPOD和CiPOD),并对它们在干旱胁迫条件下的表达特征进行了分析。CkPOD、CiPOD、CmPOD基因的cDNA序列均包含有1 074bp的开放阅读框(ORF),编码的蛋白质由357个氨基酸构成,分子量为38.7kD。系统进化分析结果显示:3种锦鸡儿属植物的POD可以和鹰嘴豆等豆科植物的POD聚为一类,且CkPOD和CmPOD具有较近的亲缘关系,CiPOD与CkPOD和CmPOD的亲缘关系相对较远,这一结果与3种锦鸡儿属植物的进化地位一致,显示POD基因较为保守,可以为锦鸡儿属植物的系统分类提供参考。PEG模拟干旱胁迫能够强烈诱导CkPOD、CiPOD和CmPOD基因的表达,显示POD基因在锦鸡儿属植物抵御干旱胁迫过程中发挥着重要作用。研究结果可为解析锦鸡儿属植物的耐旱机理以及利用锦鸡儿属植物进行荒漠改良和生态修复提供理论和实验依据。  相似文献   

16.
The floral organ morphogenesis of the apetalous flower mutant Apet33-10 in Brassica napus was investigated and the result showed that all the floral organ morphogenesis was normal except that petal primordium was not observed during flower development. Eighteen genes were found to be down regulated in early floral buds (less than 200 μm in length) of Apet33-10 at the stage of floral organ initiation by means of suppressive subtraction hybridization (SSH) and RT-PCR. These genes were involved in petal identity, calcium iron signal transduction, mRNA processing, protein synthesis and degradation, construction of cytoskeleton, hydrogen transportation, nucleic acid binding, alkaloid biosynthesis and unknown function. Three overall coding region cDNAs of APETALA3 (AP3) gene, BnAP3-2, BnAP3-3 and BnAP3-4 were obtained by RT-PCR, respectively. Real-time quantitative PCR analysis showed that the expression ratio among BnAP3-2, BnAP3-3 and BnAP3-4 was 3.67:3.68:1 in early floral buds of wild type Pet33-10. The expression level of BnAP3-2, BnAP3-3 and BnAP3-4 in early floral buds of Apet33-10 was down-regulated to 36.6, 28.3 and 66.8% with the comparison of that of wild type, respectively, and the overall expression level of AP3 genes in apetalous mutant amounted to 45.0% of that in wild type. The difference in the expression level of each AP3 gene in stamen between apetalous and wild type lines was not significant. It is suggested that lower abundant expression of AP3 genes during the early flower development might be enough for stamen primordium initiation, but not enough for petal primordium initiation in the apetalous line Apet33-10. Y.T. Zhou and H.Y. Wang are committed as the first author.  相似文献   

17.
Hsu YF  Wang CS  Raja R 《Planta》2007,226(2):311-322
Although gene expression profile of pollen has been described, there is limited information regarding a particular phase during anther/pollen development. This work characterizes gene expression pattern at desiccation in lily (Lilium longiflorum Thunb. cv Snow Queen) anthers. We have applied a suppression-subtractive hybridization (SSH) strategy, through which 90 clones were identified and sequenced. These clones resulted in the identification of 42 individual cDNAs among which 33 genes were specifically expressed at the desiccation phase of anthers of >150-mm buds. Fourteen cDNAs were chosen for further examination. Six genes were both dehydration- and abscisic acid (ABA)-inducible whereas the other eight genes were apparently dehydration-irrelevant. The group of dehydration- and ABA-induced genes was also induced by desiccation that developmentally occurs in the anther. The application of fluridone has a significant effect of inhibition on mRNA accumulation of these genes in maturing anthers during which desiccation occurs. Pollen germination analysis indicated that, of those dehydration-irrelevant genes, three were ABA-responsive and the other five were not. Thus, three separate signal pathways that function in the activation of late genes at desiccation during anther development are established. The first is the ABA-dependent pathway induced by environmental stress of dehydration. The other two pathways of signaling triggered by developmental cues, through which one is ABA-dependent and another is ABA-independent. The 14 gene proteins showed spatial and temporal expression patterns and may participate in membrane/cell wall synthesis, cytoskeletal organization, signaling, RNA binding, ubiquitin-mediated degradation and transportation during germination and tube growth. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The mechanisms plants use to adapt to abiotic stress have been widely studied in a number of seed plants. Major research has been focused on the isolation of stress-responsive genes as a means to understand the molecular events underlying the adaptation process. To study stress-related gene regulation in the moss Physcomitrella patens we have isolated two cDNAs showing homology to highly conserved small hydrophobic proteins from different seed plants. The corresponding genes are up-regulated by dehydration, salt, sorbitol, cold and the hormone abscisic acid, indicating overlapping pathways are involved in the control of these genes. Based on the molecular characterization of the moss homologs we propose that signaling pathways in response to abiotic stress may have been altered during the evolution of land plants.Abbreviation ABA Abscisic acid - EST Expressed sequence tag  相似文献   

19.
徐嘉娟  李火根 《广西植物》2016,36(9):1052-1060
棕榈酰化修饰是一种最普遍且唯一可逆的翻译后脂质修饰方式,赋予蛋白质多样化的生理功能。DHHC( Asp-His-His-Cys)蛋白家族是一类与棕榈酰化修饰相关的蛋白,多数DHHC蛋白家族成员具有蛋白质酰基转移酶( protein S-acyltransferase,PAT)活性。该研究以鹅掌楸叶芽为材料,采用RT-PCR和RACE技术,克隆获得了3个鹅掌楸DHHC蛋白家族基因cDNA全长,命名为LcPAT7、LcPAT22、LcPAT23。序列分析结果表明:LcPAT7、LcPAT22、LcPAT23基因全长分别为1933、2592、2217 bp,各包含1332、1839、1662 bp的开放阅读框( Open Reading Frame,ORF),编码433、612、533个氨基酸,预测蛋白分子量分别为40.04、67.3、60.57 kDa,理论等电点为9.15、9.03、7.29。3个基因编码的蛋白均有4个跨膜区,并且都在跨膜域( transmembrane domain, TM) TM2和 TM3之间存在一个 DHHC 蛋白家族典型的 DHHC-CRD 结构域。同源性分析表明:鹅掌楸LcPAT7、LcPAT22、LcPAT23编码的氨基酸序列与其他植物中预测的PAT具有较高的相似性。利用荧光定量PCR技术检测3个基因在鹅掌楸不同组织中的表达特性,发现3个基因在不同组织中均有表达,但表达量具有明显区别。同一家族基因表达模式的变化表明其功能非冗余。该研究结果将为鹅掌楸生长发育与形态建成,以及逆境响应信号传导等相关基因的调控研究提供了参考。  相似文献   

20.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号