首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta were individually reconstructed. Serotonin immunoreactivity was detected in 19–20 bilaterally symmetrical pairs of interneurons in the midbrain and 10 pairs in the suboesophageal ganglion. These neurons were also immunoreactive with antisera against DOPA decarboxylase. All major neuropil regions except the protocerebral bridge are innervated by these neurons. In addition, efferent cells are serotonin-immunoreactive in the frontal ganglion (5 neurons) and the suboesophageal ganglion (2 pairs of neurons). The latter cells probably give rise to an extensive network of immunoreactive terminals on the surface of the suboesophageal ganglion and suboesophageal nerves. Most of the serotonin-immunoreactive neurons show a gradient in the intensity of immunoreactive staining, suggesting low levels of serotonin in cell bodies and dendritic arbors and highest concentrations in axonal terminals. Serotonin-immunoreactive cells often occur in pairs with similar morphological features. With one exception, all serotonin-immunoreactive neurons have bilateral projections with at least some arborizations in identical neuropil areas in both hemispheres. The morphology of several neurons suggests that they are part of neuronal feedback circuits. The similarity in the arborization patterns of serotonin-immunoreactive neurons raises the possibility that their outgrowing neurites experienced similar forces during embryonic development. The morphological similarities further suggest that serotonin-immunoreactive interneurons in the midbrain and suboesophageal ganglion share physiological characteristics.Abbreviations CNS central nervous system - DDC DOPA decarboxylase - LAL lateral accessory lobe - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion - VLP ventro-lateral protocerebrum  相似文献   

2.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

3.
Fluorogenic monoamines were studied in the brain of three cockroach species by use of aldehyde-fluorescence techniques. All three optic ganglia contain fluorogenic monoamines. The lamina contains fibres with an indolylalkylamine-fluorophore. The medulla is innervated by local CA neurons which contribute to four fluorescent strata. The lobula receives both CA- and 5-HT-fibres, predominantly of central origin. CA occur in almost all areas of the brain. The areas are interconnected by a CA-fibre system. All parts of the mushroom body are innervated by CA-fibres from the surrounding neuropil. The CA innervation in the mushroom body divides it into a fronto-ventral part (alpha-lobe, beta-lobe, anterio-ventral peduncle) and a dorso-caudal part (caudo-dorsal peduncle, calices) leaving a fluorescence-free central part of the peduncle in between. CA-fibres run between the mushroom bodies of both hemispheres and also between the mushroom body and the lobula. The central body complex contains CA. The pons aggregates indolylalkylamine-containing fibres. The olfactory glomeruli are surrounded by CA-fibres originating from deutocerebral cell bodies. CA-fibres are further linked to the protocerebral neuropil. CA-fibre tracts pass from the brain to the suboesophageal ganglion and the stomatogastric nervous system. The cell bodies of the frontal ganglion are of indolylalkylamine type. Non-fluorescent neuropils (n. ocellaris, tractus olfactorio-globularis, lobus glomerulatus) are innervated by the CA-fibre system.  相似文献   

4.
Immunocytochemical staining of the nervous system of larva, pupa, and adult stage of Tenebrio molitor with anti-insulin serum demonstrated insulin-like peptides in the protocerebrum, corpora allata, and suboesophageal ganglion. During pupal development, marked changes in staining intensity of the protocerebral cells were detected. The staining pattern suggests release of insulin-like peptides early on day 0 and again on day 3 of the stadium. Injections of anti-insulin at these times caused significant delays in the timing of pupal/adult ecdysis. An immunoblot of haemolymph from day-3 pupae revealed a 6.5-kDa insulin-like molecule. These results suggest that the prothoracicotropic hormone of T. molitor is an insulin-like molecule.  相似文献   

5.
Summary We have used specific antisera against protein-conjugated-aminobutyric acid (GABA) in immunocytochemical preparations to investigate the distribution of putatively GABAergic neurons in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. About 20000 neurons per brain hemisphere exhibit GABA-immunoreactivity. Most of these are optic-lobe interneurons, especially morphologically centrifugal neurons of the lamina and tangential neurons that innervate the medulla or the lobula complex. Many GABA-immunoreactive neurons, among them giant fibers of the lobula plate, project into the median protocerebrum. Among prominent GABA-immunoreactive neurons of the median protocerebrum are about 150 putatively negative-feedback fibers of the mushroom body, innervating both the calyces and lobes, and a group of large, fan-shaped neurons of the lower division of the central body. Several commissures in the supra- and suboesophageal ganglion exhibit GABA-immunoreactivity. In the suboesophageal ganglion, a group of contralaterally descending neurons shows GABA-like immunoreactivity. The frontal ganglion is innervated by immunoreactive processes from the tritocerebrum but does not contain GABA-immunoreactive somata. With few exceptions the brain nerves do not contain GABA-immunoreactive fibers.  相似文献   

6.
Summary Topological organization of identified neurons has been characterized for the larval, pupal and imaginal suboeosphageal neuropil of the meal-worm beetleTenebrio molitor. Neuronal fate mapping allows identification of individually persisting neurons in the metamorphosing suboesophageal ganglion ofTenebrio. Analysis was performed on interneurons characterized by serotonin and CCAP (crustacean cardioactive peptide) immunohistochemistry, on motoneurons that innervate the dorsal and ventral longitudinal muscles, and on suboesophageal descending neurons. All these different populations of neurons show topologically invariant features throughout metamorphosis. Motoneurons, interneurons, and descending suboesophageal neurons of the imaginal suboeosphageal ganglion embody individually persisting larval interneurons. Impacts for a functional interpretation of the neuronal architecture of the suboesophageal ganglion are discussed.  相似文献   

7.
The cephalic nervous system of the firebrat contains antigens recognized by antisera to the clock protein period (PER), the prothoracicotropic hormone (PTTH) and the eclosion hormone (EH). The content of the 115 kDa PER-like antigen visualized on the western blots fluctuates in diurnal rhythm with a maximum in the night. The oscillations entrained in a 12:12 h light/dark (LD) cycle persist in the darkness and disappear in continuous light. They are detected by immunostaining in 14 pairs of the protocerebral neurons and are extreme in four suboesophageal neurons and two cells in each corpus cardiacum that contain PER only during the night phase. No circadian fluctuations occur in three lightly stained perikarya of the optic lobe. Five cell bodies located in each brain hemisphere between the deuto-and the tritocerebrum retain weak immunoreactivity under constant illumination. In all cells, the staining is confined to the cytoplasm and never occurs in the cell nuclei. The cells containing PER-like material do not react with the anti-PTTH and anti-EH antisera, which recognize antigens of about 50 and 20 kDa, respectively. The anti-PTTH antiserum stains in each brain hemisphere seven neurons in the protocerebrum, eight in the optic lobe, and 3–5 in the posterior region of the deutocerebrum. The antiserum to EH reacts in each hemisphere with just two cells located medially to the mushroom bodies. No cycling of the PTTH-like and EH-like antigens was detected.  相似文献   

8.
Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.  相似文献   

9.
Summary The distribution of dopamine-like immunoreactive neurons is described for the brain of the bee, Apis mellifera L., following the application of a pre-embedding technique on Vibratome sections. Immunoreactive somata are grouped into seven clusters, mainly situated in the protocerebrum. Immunoreactive interneurons have been detected in the different neuropilar compartments, except for the optic lobe neuropils. Strong immunoreactivity is found in the upper division of the central body, in parts of the stalk and in the -lobe layers of the mushroom bodies. A dense network of many immunoreactive fibres surrounds the mushroom bodies and the central body. It forms a number of interhemispheric commissures/chiasmata, projecting partly into the contralateral mushroom body and central body. The lateral protocerebral neuropil contains some large wide-field-neurons. The antennal-lobe glomeruli receive fine projections of multiglomerular dopamine-like immunoreactive interneurons.  相似文献   

10.
Summary Evidence of dopamine cells in the brain and the suboesophageal ganglion of the silkworm Bombyx mori was obtained immunohistologically in larvae and pupae. From six to eight and eight (two symmetrical groups of four) immunoreactive cells are present respectively in median and lateral protocerebral areas of the brain. In the suboesophageal ganglion, two cell clusters with dopamine immunoreactivity were observed. There was no clear difference in the nature of the immunohistochemical reaction and the number of cells between diapause- and non-diapause-egg producers, in both brains and suboesophageal ganglia. By examination of adjacent sections, it was possible to show that dopamine-immunoreactive cells in larval suboesophageal ganglia also contain an endorphin-like substance.  相似文献   

11.
The central nervous system of Calliphora vomitoria larvae is situated in the metathoracic and the first abdominal segments and is characterized by a high degree of oligomerization. It consists of only two ganglia: the supraoesophageal ganglion, or brain, and one large synganglion, a product of fusion of the suboesophageal ganglion, three thoracic, and all the abdominal ganglia. Weak development of the neuropil of the larval optic and olfactory lobes in the supraoesophageal ganglion is the result of a significant reduction of the head capsule and sensory organs in the larvae. The formation of the imaginal optic lobes begins at the III larval instar. The commissure of the future central body is present in the I instar larva, but formation of the imaginal structure of the central complex proceeds in the 3-day pupae and ends at the late pupal stage. The mushroom bodies are represented in the I instar larvae only by the pedunculi; the calyces can be distinguished in the II instar larvae but the final formation of their structure and the lobes of the imaginal type occurs at the pupal stage. The glomeruli in the deutocerebrum are also formed at a late stage of pupal development. Based on the degree of development of ganglia of the central nervous system, we can conclude that individual development of higher Diptera is characterized by deep de-embryonization.  相似文献   

12.
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful.  相似文献   

13.
We previously demonstrated that tryptophan hydroxylase (TPH), the rate-limiting enzyme of serotonin (5-HT) synthesis, was commonly present in the brains of some insects. The current study was aimed at determining the number of serotonergic neurons in the brain and suboesophageal ganglion of adult Drosophila melanogaster and to investigate further the differences in immunoreactivity between 5-HT and TPH. Brain sections of Drosophila were immunostaind with sheep anti-TPH polyclonal antibody and rabbit anti-5-HT antiserum. The 5-HT-like immunoreactive neurons were also immunoreactive for TPH and bilaterally symmetrical; 83 neurons were found in each hemisphere of the brain and suboesophageal ganglion of adult Drosophila. This technique of colocalizing 5-HT and TPH revealed a larger number of serotonergic neurons in the brain and suboesophageal ganglion than that previous reported, thus updating our knowledge of the 5-HT neuronal system of Drosophila.  相似文献   

14.
The cephalic nervous system of the firebrat contains antigens recognized by antisera to the clock protein period (PER), the prothoracicotropic hormone (PTTH) and the eclosion hormone (EH). The content of the 115 kDa PER-like antigen visualized on the western blots fluctuates in diurnal rhythm with a maximum in the night. The oscillations entrained in a 12:12 h light/dark (LD) cycle persist in the darkness and disappear in continuous light. They are detected by immunostaining in 14 pairs of the protocerebral neurons and are extreme in four suboesophageal neurons and two cells in each corpus cardiacum that contain PER only during the night phase. No circadian fluctuations occur in three lightly stained perikarya of the optic lobe. Five cell bodies located in each brain hemisphere between the deuto-and the tritocerebrum retain weak immunoreactivity under constant illumination. In all cells, the staining is confined to the cytoplasm and never occurs in the cell nuclei. The cells containing PER-like material do not react with the anti-PTTH and anti-EH antisera, which recognize antigens of about 50 and 20 kDa, respectively. The anti-PTTH antiserum stains in each brain hemisphere seven neurons in the protocerebrum, eight in the optic lobe, and 3–5 in the posterior region of the deutocerebrum. The antiserum to EH reacts in each hemisphere with just two cells located medially to the mushroom bodies. No cycling of the PTTH-like and EH-like antigens was detected.  相似文献   

15.
The supraesophageal ganglion of the wolf spider Arctosa kwangreungensis is made up of a protocerebral and tritocerebral ganglion, whereas the subesophageal ganglionic mass is composed of a single pair of pedipalpal ganglia, four pairs of appendage ganglia, and a fused mass of abdominal neuromeres. In the supraesophageal ganglion, complex neuropile masses are located in the protocerebrum which include optic ganglia, the mushroom bodies, and the central body. Characteristically, the only nerves arising from the protocerebrum are the optic nerves, and the neuropiles of the principal eyes are the most thick and abundant in this wandering spider. The central body which is recognized as an important association center is isolated at the posterior of the protocerebrum and appears as a complex of highly condensed neurons. These cells give off fine parallel bundles of axons arranged in the mushroom bodies. The subesophageal nerve mass can be divided into two main tracts on the basis of direction of the neuropiles. The dorsal tracts are contributed to from the motor or interneurons of each ganglion, whereas the ventral tracts are from incoming sensory axons.  相似文献   

16.
ABSTRACT: BACKGROUND: Remipedia, a group of homonomously segmented, cave-dwelling, eyeless arthropods have been regarded as basal crustaceans in most early morphological and taxonomic studies. However, molecular sequence information together with the discovery of a highly differentiated brain led to a reconsideration of their phylogenetic position. Various conflicting hypotheses have been proposed including the claim for a basal position of Remipedia up to a close relationship with Malacostraca or Hexapoda. To provide new morphological characters that may allow phylogenetic insights, we have analyzed the architecture of the remipede brain in more detail using immunocytochemistry (serotonin, acetylated alpha-tubulin, synapsin) combined with confocal laser-scanning microscopy and image reconstruction techniques. This approach allows for a comprehensive neuroanatomical comparison with other crustacean and hexapod taxa. RESULTS: The dominant structures of the brain are the deutocerebral olfactory neuropils, which are linked by the olfactory globular tracts to the protocerebral hemiellipsoid bodies. The olfactory globular tracts form a characteristic chiasm in the center of the brain. In Speleonectes tulumensis, each brain hemisphere contains about 120 serotonin immunoreactive neurons, which are distributed in distinct cell groups supplying fine, profusely branching neurites to 16 neuropilar domains. The olfactory neuropil comprises more than 300 spherical olfactory glomeruli arranged in sublobes. Eight serotonin immunoreactive neurons homogeneously innervate the olfactory glomeruli. In the protocerebrum, serotonin immunoreactivity revealed several structures, which, based on their position and connectivity resemble a central complex comprising a central body, a protocerebral bridge, W-, X-, Y-, Z-tracts, and lateral accessory lobes. CONCLUSIONS: The brain of Remipedia shows several plesiomorphic features shared with other Mandibulata, such as deutocerebral olfactory neuropils with a glomerular organization, innervations by serotonin immunoreactive interneurons, and connections to protocerebral neuropils. Also, we provided tentative evidence for W-, X-, Y-, Z-tracts in the remipedian central complex like in the brain of Malacostraca, and Hexapoda. Furthermore, Remipedia display several synapomorphies with Malacostraca supporting a sister group relationship between both taxa. These homologies include a chiasm of the olfactory globular tract, which connects the olfactory neuropils with the lateral protocerebrum and the presence of hemiellipsoid bodies. Even though a growing number of molecular investigations unites Remipedia and Cephalocarida, our neuroanatomical comparison does not provide support for such a sister group relationship.  相似文献   

17.
李娜  李华  那杰 《昆虫知识》2008,45(2):327-329
蟋蟀脑由前脑、中脑和后脑三部分组成。前脑由1对蕈形体、中央复合体和视叶构成;每个蕈形体由2个冠、柄及与柄相连的α叶和β叶组成,是信息联络整合部位;中央复合体由中央体和脑桥组成,主要参与感觉信息的加工过程;视叶由神经节层、外髓和内髓组成,是视觉系统的中心。中脑由主要组成成分为嗅觉纤维球的嗅叶组成,是嗅觉系统的中心。后脑向后与食道下神经节相连。  相似文献   

18.
Summary Gastrin/cholecystokinin (gastrin/CCK)-like immunoreactivity has been detected in the brain, suboesophageal ganglion and corpora cardiaca of the larva of Aeschna cyanea by radioimmunoassay and immunohistochemistry, by use of two antisera raised against the sulfated (CCK-8S) and the unsulfated form (CCK-8NS) of the carboxyl terminal octapeptide. Numerous immunoreactive neurons were demonstrated in the protocerebrum (exclusive of optic lobes) and suboesophageal ganglion where 20 and 15 symmetrical clusters of reactive cells, respectively, were observed. Immunoreactive cells also occurred in the tritocerebrum, the optic lobes and the frontal ganglion. In the corpora cardiaca, gastrin/CCK-like material was found both within intrinsic cells and axon terminals. RIA measurements support the immunohistochemical results in so far as large amounts of gastrin/CCK-like material were detected in the brain, corpora cardiaca and suboesophageal ganglion complex. Both boiling water-acetic acid- and methanol-extraction procedures were performed. Comparisons of the results lead to the conclusion that a large part of the gastrin/CCK-like material occurs as small molecules. Immunohistochemical procedures performed on material fixed in a solution of picric acid-paraformaldehyde demonstrated differences in the immunoreactivity of the tested antisera. First, the immunohistochemical reaction was always more pronounced when the CCK-8NS antiserum was used instead of the CCK-8S antiserum, which may be interpreted by a lower affinity of the latter. In the second place, some neurons strongly stained by the CCK-8NS antiserum were only very faintly if at all stained by the CCK-8S antiserum, which may mean that different peptides or at least distinct forms of the same precursor are detected.  相似文献   

19.
Summary The distribution of octopamine in the metathoracic ganglion, brain and corpus cardiacum of Locusta migratoria and Schistocerca gregaria was investigated by means of immunocytochemistry with an antiserum against octopamine. The dorsal unpaired median (DUM) cells of the metathoracic ganglion were found to be strongly octopamine-immunoreactive. In the rostroventral part of the protocerebrum a group of seven immunopositive cells was demonstrated. Stained nerve fibres of these cells run into three directions: circumoesophageal connectives, midbrain, and optic lobes. As far as the protocerebrum is concerned, immunoreactive fibres were found in the central body, the protocerebral bridge, and in other neuropile areas. In the optic lobe a dense plexus of immunopositive fibres was found in the lobula and in the medulla. In the brain one other immunopositive cell was demonstrated, situated at the lateral border of the tritocerebrum. Octopamine could not be shown to occur either in the globuli cells of the mushroom bodies or in the dorsolateral part of the protocerebrum, where the perikarya of the secretomotor neurones are located that innervate the glandular cells of the corpus cardiacum. In the nervi corporis cardiaci II, which contain the axons of the neurones that extend into the glandular part of the corpus cardiacum, and in the corpus cardiacum proper no specific octopamine immunoreactivity could be found.  相似文献   

20.
Summary The distribution and morphology of neurons reacting with antisera against dopamine (DA), tyrosine hydroxylase (TH) and histamine (HA) were analyzed in the blowflies Calliphora erythrocephala and Phormia terraenovae. TH-immunoreactive (THIR) and HA-immunoreactive (HAIR) neurons were also mapped in the fruitfly Drosophila melanogaster. The antisera against DA and TH specifically labeled the same neurons in the blowflies. About 300 neurons displayed DA immunoreactivity (DAIR) and THIR in the brain and subesophageal ganglion of the blowflies. Most of these neurons were located in bilateral clusters; some were distributed as bilateral pairs, and two ventral unpaired median (VUM) neurons were seen in the subesophageal ganglion. Immunoreactive processes were found in all compartments of the mushroom bodies except the calyces, in all divisions of the central body complex, in the medulla, lobula and lobula plate of the optic lobe, and in non-glomerular neuropil of protocerebrum, tritocerebrum and the subesophageal ganglion. No DA or TH immunoreactivity was seen in the antennal lobes. In Drosophila, neurons homologous to the blowfly neurons were detected with the TH antiserum. In Phormia and Drosophila, 18 HA-immunoreactive neurons were located in the protocerebrum and 2 in the subesophageal ganglion. The HAIR neurons arborized extensively, but except for processes in the lobula, all HAIR processes were seen in non-glomerular neuropil. The deuto- and tritocerebrum was devoid of HAIR processes. Double labeling experiments demonstrated that TH and HA immunoreactivity was not colocalized in any neuron. In some regions there wasm however, substantial superposition between the two systems. The morphology of the extensively arborizing aminergic neurons described suggests that they have modulatory functions in the brain and subesophageal ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号