首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The pendulous, bitegmic, anatropous ovulr with dorsal raphe is suspended at the tip of a massive funicle. A group of nurellar cells with intensively staining cell walls, the hypostase sensu stricto , is present. The initially plate-like tanniniferous chalazal-nucellar tissue, with suberin and lignin impregnated cell walls represents a hypostase sensu lato . The mature seed-coat is formed by the raphe, extensive chalaza, adjacent, well-developed, cup-like hypostase sensu lato , remnants of the two integuments and a cuticular layer. The exalbuminous seed of Sclerocarya birrea suhsp. caffra (the Marula), is regarded to he a derived and phylogenetically advanced type. The undifferentiated seed-roat is very similar to that found in Lannea discolor which, like the marula, belongs to the tribe Spondieae. The similarities in the structure of the seed-coat and seed of the marula and L. discolor confirm their proposed close phylogenetir relationship.  相似文献   

2.
VON TEICHMAN, I., 1991. Ontogeny of the seed-coat of Rhus lancea L. fil., and pachychalazy in the Anacardiaceae. The bitegmic, anatropous ovule develops into an exalbuminous, partially pachychalazal and endotegmic seed. In the mature seed-coat the extensive chalaza with associated tanniniferous hypostase sensu lato manifests externally as a characteristic brown patch. The walls of the cells of the hypostase are impregnated with callose and lipidic substances, which most probably represent cutin. Ultimately the outer integument and outer parts of the inner integument are more or less squashed. However, the cell walls of the inner epidermis of the inner integument show distinct secondary thickening and lignification. The pachychalazal seed with undifferentiated seed-coat characterizes not only a number of the genera of the tribe Anacardieae, but also occurs in Heeria of the tribe Rhoeae. A number of genera of the tribe Spondiadeae have a partially pachychalazal seed. The seed-coat of the latter shows varying degrees of traces of an exo-, meso- and/or endotestal lignification. The seed of certain genera of the Rhoeae, is partially pachychalazal and endotegmic, or probably only endotegmic.  相似文献   

3.
The exocarp sensu lato , which develops from the outer epidermis and adjacent parenchyma of the ovary wall, consists of collenchyma cells with a stomatous epidermis. The fleshy, parenchymatous mesocarp or sarcocarp develops after endocarp differentiation. The endocarp is partly spongy and partly woody. The spongy endocarp contains most of the vascular tissue and fills the cavities and grooves of the intricately sculptured outer woody endocarp. The inner woody endocarp and adjacent woody, endocarpal operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall. The bitegmic, anatropous ovule develops into a derived, exalbuminous seed with an undifferentiated seed-coat. An extensive chalaza, extensive hypostase sensu lato and the raphe are important in the development of the seed-coat. The pericarp and seed-coat of H. caffrum is compared with those of Sclerocarya birrea subsp. caffra and Lannea discolor . The close phylogenetic relationship of these three species of the Spondieae is reaffirmed. The marked similarities in pericarp and seed structure between H. caffrum and species of the genus Spondias are noted.  相似文献   

4.
Heeria argentea (tribe Rhoeae), a monotypic, dioecious tree, is endemic to the core area of the Cape Floristic Region. The mature exocarp consists of a uniseriate layer of palisade-like epidermal cells, interspersed with modified stomata. The mature endocarp sensu stricto develops solely from the inner epidermis. It is essentially two-layered and resembles the state in Protorhus longifolia. This endocarp is here proposed as a distinct fourth endocarpal subtype under the so-called Anacardium -type. The large, pachychalazal, recalcitrant seed develops from the single, anatropous, bitegmic, crassinucellate ovule. This ovule is characterized by an extensive chalaza, vascularization and Anacardiaceae-type hypostase. The pachychalazal seed coat contains abundant vascular bundles and a tanniniferous hypostase. The inner epidermis of the inner integument differentiates into an endotegmen. The contribution of the integuments towards seed coat development is negligible. Concerning characters of the disc in the female flower, the meso- and endocarp, as well as seed size, degree of pachychalazy, nutrient reserves (starch) in the chlorophyllous cotyledons and hypogeal germination, Heeria shows a very close phylogenetic relationship to Protorhus longifolia. However, fruit and seed structure clearly supports the taxonomic separation of Heeria from Ozoroa. Data also support the view that Heeria is a tropical relict, and the hypothesis that pachychalazy, greater seed size, as well as recalcitrant seed viability behaviour constitute ancestral seed character states. Pachychalazy is regarded as a functional adaptation for more efficient transfer of nutrients.  相似文献   

5.
TOMLINSON, P. B., TAKASO, T. & RATTENBURY, J. A., 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Cones are borne directly on phylloclades, usually in the position of basal segments or as segment appendages. Each cone consists of a series of spirally arranged bracts, of which the middle bracts each subtend a single, sessile ovule. There is no ovuliferous scale. Ovules arise as ovoid outgrowths; integument development involves periclinal divisions of hypodermal cells with the integument becoming bilobed and extended laterally. The mature ovule is flask-shaped. The integument includes an extensive middle region bounded by an inner and outer epidermis; the outer hypodermis is differentiated as two contrasted cell layers. An aril differentiates late by periclinal divisions of the outer hypodermal cells at the base of the ovule. The three outermost layers of the integument become differentiated in the mature seed as an epidermis, with thick, cutinized outer tangential walls, an outer hypodermal tanniniferous layer and a sclerotic inner layer. Each ovule is vascularized by two strands that diverge from the axial bundles delimiting the gap left by the departing bract trace.  相似文献   

6.
Development and structure of the pericarp of Lannea discolor (Sonder) Engl.(Anacardiaceae). The exocarp develops from the outer epidermis and subepidermal, parenchymatous cell layers of the ovary wall. A parenchymatous zone with secretory cavities more or less delimits the exocarp internally. The inner part of the parenchymatous mesocarp is tanniniferous. The parenchymatous transition zone between mesocarp and sclercnchymatous endocarp or sderocarp, contains vascular tissue. The inner endocarp and operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall, while the outer endocarp develops from the parenchymatous zone with procambium strandS. Comparing the pericarp of L.discolor with those of Sclerocarya birrea subsp. caffra and Rhus lancea , the close affinity with Sclerocarya birrea subsp. caffra is evident.  相似文献   

7.
The anatropous, bitegmic and crassinucellar ovule has a nuclear endosperm development. It is further characterized by a hypostase sensu lato. This hypostase being an integral part of the chalaza undergoes a secondary extension with it. At maturity the exalbuminous seed is partially pachychalazal and therefore two anatomically distinct larger parts can be distinguished in the mature seed coat. An endotegmen typifies the integumentary seed coat, while a saddle-shaped hypostase characterizes the chalazal seed coat. This seed coat shows several characteristics of the typical anacardiaceous pachychalazal seed. The cotyledons store lipids and protein as nutrient reserveS. A well-developed cuticle, cuticular layer, cutin and callose in the hypostase cell walls, as well as tannin-like deposits in the seed coat, protect the physiologically ripe seed against dehydration.  相似文献   

8.
MANNING, J. C. & BRITS, G. J., 1993. Seed coat development in Leucospermum cordifolium (Knight) Fourcade (Proteaceae) and a clarification of the seed covering structures in Proteaceae . The development of the seed coat and pericarp is studied in Leucospermum cordifolium from ovule to mature seed. The ovule and seed are characterized by a tegmic pachychalaza. The pericarp is adnate to the integuments from anthesis and remains unthickened to maturity. The outer integument forms the seed coat and the seed is endotestal: the outer epidermis becomes tanniniferous and the inner epidermis develops into a crystalliferous palisade. The inner integument degenerates at an early stage. Examination of the literature reveals that the crystal palisade layer of the outer integument has been erroneously assumed to constitute an endocarp. This finding indicates that a re-interpretation of all published information on the seed coat in indehiscent Proteaceae is necessary before any speculations on the phylogenetic significance of the seed coat can be entertained.  相似文献   

9.
Abstract: The embryology and seed structure of Paepalanthus sect. Actinocephalus species were studied. The embryological and structural seed characters fit well with those of the other commelinaceous families. Within the Commelinales sensu Dahlgren, Eriocaulaceae and Xyridaceae represent two embryologically close families. In Paepalanthus sect. Actinocephalus the ovule is orthotropus, bitegmic, and tenuicellate with a micropyle formed by the inner integument. The seeds are endotestal. The outer cell layer of the testa and the outer periclinal wall of the endotesta disintegrate during development. The endotegmen is tanniniferous. The outer layer of the tegmen becomes compressed and is no longer recognizable in the mature seed. The seeds are operculate.  相似文献   

10.
In the ovules of Vanilla (Vanilla planifolia Andr.) before fertilization, outer integument surrounded the lower part of ovule. Uranin got into ovule through funiculus, forming, the first center of fluorescence at the chalaza zone of ovule. Then uranin was transported to micropyle end along inner integument, forming the second center of fluorescence at micropyle end of inner integument. Soon, fluorescence appeared in the egg apparatua. After fertilization, the outer integument ovule extended upward, forming micropyle ogerber with inner integument. After getting into ovule through funiculus, uranin spreads to- ward several directions: l. transported to outer integument at the entrance of micropyle; 2. transported downward to chalaza zone along outer integument at the side of funiculus; 3. extended from chalaza zone to the inside and to the outer integument at the side far from funiculus The ovules of Vanilla had no vascular bundles. On transporting in inner integument, however, the cells in inner layer next to the embryo sac appeared to be the major passage. In mature embryo sac, there was cuticle between inner integument and embryo sac at the half of micropyle end. But between embryo sac at the half of chalaza end and nucellus, cuticle was absent. Nutrient could get into embryo sac from chalaza end undoubtedly. As egg apparatus showed the fluorescence after formation of fluorescence center of inner integument at micropylar end, the possibility that nutrient got into embryo sac from micropyle could not be excluded.  相似文献   

11.
Leaves of Passerina are inversely ericoid. Adaxial epidermal cells are relatively small; abaxial ones are large and tanniniferous. Mucilaginous epidermal cells are usually present in many Thymelaeaceae, including Passerina , mainly in the abaxial epidermis. They are unequally divided by a periclinal wall-like septum into two separate compartments: (1) the outer, adjacent to the cuticle, containing mostly tanniniferous substances and (2) the inner, containing mucilage. This type of epidermis has often been incorrecdy described as uni-, bi- or multiseriate. Transmission electron microscopy revealed mucilage, characterized by microfibrils, embedded between die innermost wall-like septum and outermost layers of the inner periclinal cell wall. As accumulation of mucilage increases, the innermost (adjacent to the cell contents) layer of the original periclinal cell wall is pressed against the cytoplasm, thus forming a clearly demarcated cellulose periclinal wall which divides the epidermis cell into two compartments, the inner wiuh mucilage and the outer comprising the cell lumen. Existing controversy is critically discussed. Our observations confirm the authenticity of mucilagination in epidermal cell walls.  相似文献   

12.
Acalyphoideae, the largest subfamily of Euphorbiaceae, are investigated with respect to ovule and seed structure on the basis of 172 species of 80 genera in all 20 tribes of Acalyphoideae sensu Webster. All species of Acalyphoideae examined have bitegmic ovules with a non-vascularized inner integument. However, noticeable differences exist among and sometimes within the genera in the thickness of the inner and outer integument, the presence or absence of vascular bundles in the outer integument, whether ovules are pachychalazal or not, the presence or absence of an aril, seed coat structure (in terms of the best-developed mechanical cell-layer), and the shape of cells constituting the exotegmen. For the latter two characters, two different types of seed coat (i.e., "exotegmic" and "exotestal") and three different types of exotegmic cell (i.e., palisadal, tracheoidal and ribbon-like) were distinguished. Comparisons showed that three tribes Clutieae, Chaetocarpeae and Pereae are distinct from the other Acalyphoideae as well as from the other Euphorbiaceae in having an exotestal seed coat with a tracheoidal exotegmen. The tribe Dicoelieae is also distinct from the other Acalyphoideae in having an exotegmic seed that is composed of ribbon-like cells of exotegmen (i.e., cells both longitudinally and radially elongated, sclerotic and pitted). The tribe Galearieae, which should be treated as a distinct family Pandaceae, is also distinct from the other Acalyphoideae in having an exotegmic seed with a tracheoidal exotegmen (i.e., cells longitudinally elongated, sclerotic and pitted). The remaining genera of Acalyphoideae always have an exotegmic seed with a palisadal exotegmen (i.e., cells radially elongated, sclerotic and pitted). The shared palisadal exotegmen supports the close affinity of Acalyphoideae (excluding five tribes) with Crotonoideae and Euphorbioideae. Within the remaining genera of Acalyphoideae, a significant diversity is found in ovule and seed morphology with respect to the thickness of the inner and outer integument, the size of chalaza, vascularization of an outer integument and an aril.  相似文献   

13.
Anther and ovule development of the theaceous Ternstroemioideae is reported for the first time on the basis of eight specles of three generaAdinandra, Cleyera andEurya. Anthers of these three genera are similar and can be characterized by the following traits: tapetum of glandular type, anther dehiscing latrorse-introrse, both connective and anther epidermis heavily tanniniferous, and connective and even anther wall layers having abundant druses. Their ovules are also very similar in being bitegmic and tenuinucellate, and in having a micropyle formed by the inner integument only, three cell-layered integuments, a raphe bundle terminating at chalaza, usually amphitropous or less often campylotropous ovule, embryo sac formation of Polygonum type, ephemeral antipodal cells, and tanniniferous ovule epidermis. Such ovules are readily distinguishable from those of Camellioideae and all other families. It is suggested that the three genera studied are closely related, and that the degree of embryological specialization is highest inAdinandra and lowest inEurya. On the basis of the significant embryological discrepacies, the Ternstroemioideae seem to have diverged rather distantly from the other core-subfamily Camellioideae of the Theaceae.  相似文献   

14.
Studies on embryology and seed morphology are complementary to molecular phylogenetics and of special value at the genus level. This paper discusses the delimitation and evolutionary relationships of genera within the tribe Hydrophylleae of the Boraginaceae. The seven Nemophila species characterized by a conspicuous seed appendage are similar in embryology and seed structure. The ovule is tenuinucellate and unitegmic with a meristematic tapetum. The embryo sac penetrating the nucellar apex is of the Polygonum type, has short-lived antipodal cells, and an embryo sac haustorium. The endosperm is cellular, producing two terminal endosperm haustoria, of which the chalazal has a lateral branch. Embryogeny is of the Chenopodiad type (as in Pholistoma). The seed coat is formed from the small-celled inner epidermis of the integument. The large-celled outer epidermis of the integument disintegrates into scattered cells. Seed pits evolve from irregularly placed inner epidermal cells of the integument. The chalazal part of the ovule produces a cucullus, that functions as an ant-attracting elaiosome. Those species of Nemophila with a conspicuous cucullus form a natural genus. Nemophila is most closely related to Pholistoma. The integumentary seed pits of Nemophila might have evolved from ovular seed pits similar to those in Pholistoma.  相似文献   

15.
本文较系统地报道了耳叶补血草(Limonium otolepis(Schrenk.)Kuntze.)的大、小孢子发生和雌、雄配子体形成过程.主要结果:(1)小孢子母细胞减数分裂过程中的胞质分裂为同时型,小孢子四分体多为正四面体形,少数左右对称形;(2)成熟的花粉为三细胞型,具3个萌发孔;(3)花药壁由5层细胞组成,最外层为表皮,其内分别为药室内壁、中层、绒毡层,绒毡层为变形型,花药壁的发育属于基本型;(4)耳叶补血草的雌蕊由5心皮组成,柱头、花柱分离,子房合生,1室,基生胎座,胚珠1个,拳卷型,双珠被,厚珠心,珠孔由内珠被形成;(5)孢原细胞发生于珠心表皮下,经1次平周分裂,形成造孢细胞,由造孢细胞直接发育成大孢子母细胞,大孢子母细胞减数分裂形成4个大孢子呈直线排列,合点端大孢子具功能,属于典型的蓼型胚囊发育.  相似文献   

16.
小草蔻胚珠及雌配子体发育的研究   总被引:1,自引:0,他引:1  
小草蔻(Alpinia henryi K.Schum)胚胎倒生,厚珠心,双珠被。内珠被独自成珠孔。造孢细胞,大孢子母细胞和四体时期,周缘细胞仅1层。四分体线形,少数三分体。合点在孢子具功能。成熟胚珠具有珠心冠原和承珠盘结构。胚囊发育属蓼型。成熟胚整,合点端狭长,形成盲囊。反足核不能构成细胞,是短命的。膜质假种皮的原基从外珠被和珠柄发生。  相似文献   

17.
The development and structure of the exo-, meso- and endocarp of the drupe of Sclerocarya birrea subsp. caffra were examined. The mature exocarp comprises the outer epidermis with stomata and lenticels, subepidermal collenchyma and parenchymatous layers with secretory canals. This exocarp sensu lato develops from the outer epidermis and the outer layers of the ovary wall. The fleshy parenchymatous mesocarp or sarcocarp also contains secretory tissue. The mesocarp develops after endocarp differentiation and lignification. The developmental sequence within the pericarp corresponds to the general pattern in drupes. The endocarp or sclerocarp, which is not stratified, consisting mainly of brachysclereids, fibres and vascular elements, develops from the inner epidermis and adjacent tissue of the young ovary wall including the procambium strands. The operculum represents a well-defined part of the endocarp. Early in its development a parenchymatous zone already clearly demarcates the operculum. The literature on the pericarp of the Anacardiaceae drupe is discussed to establish the diagnostic value of these morphological characteristics for future taxonomic studies.  相似文献   

18.
The embryological characteristics and ovular integument development of the dioecious species Woonyoungia septentrionalis (Dandy) Law (Magnoliaceae), which are poorly understood, were investigated under laser scanning confocal microscope (LSCM) and light microscope (LM). The embryological characteristics conform to most of the previously studied species in Magnoliaceae. The anther has 4 microsporangia, and the anther wall develops according to the dicotyledonous type. Cytokinesis at meiosis of the microspore mother cells follows a modified simultaneous type, giving rise to isobilateral or decussate tetrads, and a cell plate is absent, but a membrane was observed. Mature pollen grains are 2‐cellular and have high germination rates. The ovule is anatropous, crassinucellate and bitegmic, and meiotic result in linear tetrads of megaspores, the one at the chalazal end functions directly as an embryo‐sac cell. The development of the embryo sac is of the Polygonum‐type and endosperm formation is of the nuclear type. The outer integument of the ovule differentiates into an outer fleshy and an inner stony layer while the inner integument is reduced to a tanniniferous layer. The normal embryological development, high germination rates of pollen and high seed set indicate that the primary reason for the decline of the species is not to be found in these developmental processes.  相似文献   

19.
An exocarp sensu stricto develops from the outer epidermis of the ovary wall. At maturity it comprises extensively radially elongated palisade-like parenchyma cellS. Besides having an outer cuticle, the outer tangential and outer parts of the radial cell walls of these cells are strongly cutinized. Large, permanently open stomata and saucer-shaped depressions also characterize the exocarp. The mature mesocarp sensu stricto consists of secondarily thickened parenchyma and brachysclereidS. An abundance of tanniniferous deposits and crystals, as well as secretory ducts associated with the vascular bundles also form part of the mature mesocarp. Derivatives of the inner epidermis of the ovary wall differentiate into the stratified endocarp sensu stricto. At maturity this comprises consecutive layers of macrosclereids, osteosclereids (typified by a capitate part and cell wall flutes), brachysclereids, and crystalliferous sclereidS. Pericarp structure is related to its taxonomic significance and the possible role of micromorphological characters in the survival strategy of Ozoroa paniculosa. It is shown that ontogenetic studies contribute to the precise interpretation of previously described cell layers, ensuring that homologous tissues are compared in different taxa.  相似文献   

20.
The development of the floral bud, especially the ovule and seed coat, of Sinomanglietia glauca was observed. Floral buds were covered by eight to nine hypsophyll pieces. The hypsophyll nearest the tepal was closed completely and characterized by two arrays of densely stained cells with dense cytoplasm, which split longitudinally at flowering. The perianth consisted of 16 tepals arranged in three whorls. The gynoecium was composed of numerous apocarpous carpels; the ovule was anatropous with two integuments. Embryogenesis was of the Polygonum type, and the endosperm was nuclear. The inner integument degenerated during seed development. The seed of S. glauca had an endotestal seed coat comprised of a sclerotic layer derived from the inner adaxial epidermis of the outer integument and a sarcotesta derived mainly from the middle cells between the inner and outer epidermis of the outer integument. The embryo developed normally, so embryogenesis is not the cause of difficult regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号