首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanosecond fluorescence spectroscopy was used to study the unique binding site of the retinol-binding protein (RBP) from human serum. At pH 7.4, the binding of retinol to RBP caused the following spectroscopic changes in the ligand: (a) an enhancement of the fluorescence decay time (gamma = 8 ns); and (b) an increase in the emission anisotropy (A = 0.29). Retinol in hexane has a fluorescent decay time of 4.2 ns and a low emission anisotropy (A = 0.02). The increase in the fluorescence decay time of bound retinol is not due to dielectric relaxation effects of polar groups, since nanosecond time-resolved emission spectra of either retinol in glycerol or retinol bound to RBP, failed to show any time-dependent shifts in emission maxima during the time period investigated 0 to 30 ns. The degree of rotational mobility of bound retinol was investigated by time emission anisotropy measurements. The observed rotational correlation time (theta = 7.2 ns) is consistent with a rigid compact macromolecule of 21,000 molecular weight.  相似文献   

2.
In this work, boundary element methods are used to model the electrophoretic mobility of lysozyme over the pH range 2-6. The model treats the protein as a rigid body of arbitrary shape and charge distribution derived from the crystal structure. Extending earlier studies, the present work treats the equilibrium electrostatic potential at the level of the full Poisson-Boltzmann (PB) equation and accounts for ion relaxation. This is achieved by solving simultaneously the Poisson, ion transport, and Navier-Stokes equations by an iterative boundary element procedure. Treating the equilibrium electrostatics at the level of the full rather than the linear PB equation, but leaving relaxation out, does improve agreement between experimental and simulated mobilities, including ion relaxation improves it even more. The effects of nonlinear electrostatics and ion relaxation are greatest at low pH, where the net charge on lysozyme is greatest. In the absence of relaxation, a linear dependence of mobility and average polyion surface potential, (lambda zero)s, is observed, and the mobility is well described by the equation [formula: see text] where epsilon 0 is the dielectric constant of the solvent, and eta is the solvent viscosity. This breaks down, however, when ion relaxation is included and the mobility is less than predicted by the above equation. Whether or not ion relaxation is included, the mobility is found to be fairly insensitive to the charge distribution within the lysozyme model or the internal dielectric constant.  相似文献   

3.
The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H2O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in 2H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D2O was used instead of H2O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles. Temperature dependences of the hydration and Stokes radius of the casein submicelles were consistent with the hypothesis that hydrophobic interactions represent the predominant forces responsible for the aggregation leading to a submicellar structure. The same temperature dependence of r and v was found for casein under micellar conditions; here, the absolute values of both the Stokes radii and hydrations were significantly greater than those obtained under submicellar conditions, even though tau c values corresponding to the great size of the entire micelle would result in relaxation rates too fast to be observed by these NMR measurements. The existence of a substantial amount of trapped water within the casein micelle is, therefore, corroborated, and the concept that this water is in part associated with submicelles of nanosecond motion is supported by the results of this study.  相似文献   

4.
The backbone dynamics of ferricytochrome b(562), a four-helix bundle protein from Escherichia coli, have been studied by NMR spectroscopy. The consequences of the introduction of a c-type thioether linkage between the heme and protein and the reduction to the ferrous cytochrome have also been analyzed. (15)N relaxation rates R(1) and R(2) and (1)H-(15)N NOEs were measured at proton Larmor frequencies of 500 and 600 MHz for the oxidized and reduced protein as well as for the oxidized R98C variant. In the latter protein, an "artificial" thioether covalent bond has been introduced between the heme group and the protein frame [Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., de Lumley Woodyear, T., Johnson, C. M., and Barker, P. D. (2000) Biochemistry 39, 1499-1514]. The (15)N relaxation data were analyzed with the ModelFree protocol, and the mobility parameters on the picosecond to nanosecond time scale were compared for the three species. The three forms are rather rigid as a whole, with average generalized order parameters values of 0.87 +/- 0.08 (oxidized cytochrome b(562)), 0.84 +/- 0.07 (reduced cytochrome b(562)), and 0.85 +/- 0.07 (oxidized R98C cytochrome b(562)), indicating similar mobility for each system. Lower order parameters (S(2)) are found for residues belonging to loops 1 and 2. Higher mobility, as indicated by lower order parameters, is found for heme binding helices alpha 1 and alpha 4 in the R98C variant with respect to the wild-type protein. The analysis requires a relatively long rotational correlation time (tau(m) = 9.6 ns) whose value is accounted for on the basis of the anisotropy of the molecular shape and the high phosphate concentration needed to ensure the occurrence of monomer species. A parallel study of motions in the millisecond to microsecond time scale has also been performed on oxidized wild-type and R98C cytochrome b(562). In a CPMG experiment, decay rates were analyzed in the presence of spin-echo pulse trains of variable spacing. The dynamic behavior on this time scale is similar to that observed on the sub-nanosecond time scale, showing an increased mobility in the residues connected to the heme ligands in the R98C variant. It appears that the increased protein stability of the variant, established previously, is not correlated with an increase in rigidity.  相似文献   

5.
A photoactivatable fluorescent anthraniloyl group has been directed to the active-site serine group of alpha-chymotrypsin and trypsin. The acylated derivatives are nonfluorescent until irradiated. When activated by light a highly reactive nitrene is generated which is capable of covalent insertion into the protein matrix. The resultant insertion product of this photolysis is a highly fluorescent reporter group which has little rotational mobility and is cross-linked through the serine to the protein matrix in the active site region of the protein. Because of the sensitivity to the polarity of the environment shown by the anthraniloyl chromophore, the dipolar relaxation characteristics of the cross-linked through the serine to the protein matrix in the active site region of the protein. Because of the sensitivity to the polarity of the environment shown by the anthraniloyl chromophore, the dipolar relaxation characteristics of the cross-linked enzyme and deacylated enzyme were determined. These measurements show that little relaxation occurs on the nanosecond time scale for the cross-linked enzyme, but upon deacylation of the serine increased dipolar relaxation of the protein with the attached reporter group is observed. The use of these active-site directed photoactivatable fluorescent probes can be extended to probe the active-site structure of complex enzymes and conformational dynamics of active-site regions in proteins and to serve as potential functional site labels in fluorescence resonance energy transfer measurements.  相似文献   

6.
The fluorescence spectra of 2-(p-toluidinylnaphthalene)-6-sulfonate associated with β-lactoglobulin, β-casein. and bovine and human serum albumins are shown to depend on excitation wavelength. A long-wave shift of the spectra is observed at the long-wave edge excitation, reaching 10 nm and above. A similar phenomenon is found in glucose glass and in glycerol at + 1°C, i.e., in systems with delayed dipolar solvent relaxation, but not in liquid solutions. This phenomenon is proposed to be based on relaxation processes in the excited state. There exists a distribution of chromophore microstates with different interactions with surrounding groups which results in heterogeneous broadening of the electronic spectra and allows photoselection of a part of this distribution, being characterized by a low transition energy. The fast structural relaxation results in an altered distribution and, if this is the case, the effect of edge excitation of fluorescence spectra is not observed. If the structural relaxation during the excited state lifetime is absent, this effect is maximal. This interpretation is in agreement with results on the influence of red edge excitation on the low-temperature fluorescence spectra of dyes and with the data on time-resolved nanosecond fluorescence spectroscopy. The results of this work strongly support the significant dye fluorescence spectral shifts on protein binding, being determined not only by polarity changes in their environment, but also by relaxation properties of protein groups in this environment. These results also indicate that on the nanosecond time scale, the structural relaxation around the excited chromophore in proteins may be incomplete.  相似文献   

7.
Fluorescent dansyl labels were covalently attached to poly (L-lysine) (poly(Lys)) with a degree of polymerization of 300 to 600. The degree of labeling was 0.01 to 0.085 (mol label to mol amino acid residues). From the decay of the anisotropy of fluorescence it was concluded that the labels were highly mobile both in the coiled and helical state. A decrease of fluorescence intensity accompanied the helix-coil transition. Identical pH induced transition curves were measured by circular dichroism and fluorescence. The midpoint of the transition was at pH 10.2. The kinetics of the transition were studied by temperature-jump relaxation using fluorescence detection. A single relaxation phase was observed. The relaxation time tau exhibited a distorted bell shaped dependence on the degree of helicity f with a maximum value tau(max) = 15 micros at f = 0.3 and 20 degrees C. It was independent of polymer concentration and of the degree of labeling. A rate constant of helix propagation kF = 10(7) s(-1) was calculated from tau(max) and published values of the nucleation parameter sigma. The activation energy was 16 kJ mol . The observed rate constant is comparable to that of poly(L-glutamic acid) but two orders of magnitude smaller than that found for polyamino acids with nonionizable side chains.  相似文献   

8.
A temperature-jump relaxation study of the interaction of hydroxystilbamidine with DNA and synthetic polynucleotides has been performed. Two concentration dependent relaxation times tau1 and tau2 have been observed in the submillisecond range when detecting relaxation effects by means of light absorption. The longer of these two times (tau1) is also observed when using "blue" or "red" fluorescence detection. In the longer time scale the "red" fluorescence shows no other relaxation but the blue fluorescence shows two additional relaxation processes (tau3 and tau4) which correspond to an increase of fluorescence with temperature and which are independent of concentration. The experimental results clearly indicate that tau1 and tau2 are associated with the binding of the dye to strong and weak binding sites, respectively. A kinetic model is given to explain the results. It allows the determination of the four rate constants for the two binding reactions and yields equilibrium association constants in good agreement with those obtained from stoichiometric studies. The study of the effect of temperature, nature of the polymer, ionic strength and fraction of bound dye on tau3 and tau4 indicates that the dye acts only as a "blue" fluorescence probe of some processes involving the DNA or polynucleotide alone. These processes appear to be related with the dynamic structure of the polymers.  相似文献   

9.
We have determined the amplitude of nanosecond fluctuations of the collagen azimuthal orientation in intact tissues and reconstituted fibers from an analysis of 13C NMR relaxation data. We have labeled intact rat calvaria and tibia collagen (mineralized and cross-linked), intact rat tail tendon and demineralized bone collagen (cross-linked), and reconstituted lathyritic (non-cross-linked) chick calvaria collagen with [2-13C]glycine. This label was chosen because one-third of the amino acid residues in collagen are glycine and because the 1H-13C dipolar coupling is the dominant relaxation mechanism. Spin-lattice relaxation times (T1) and nuclear Overhauser enhancements were measured at 15.09 and 62.98 MHz at 22 and -35 degrees C. The measured NMR parameters have been analyzed by using a dynamic model in which the azimuthal orientation of the molecule fluctuates as a consequence of reorientation about the axis of the triple helix. We have shown that if root mean square fluctuations in the azimuthal orientations are small, gamma rms much less than 1 rad, the correlation function decays with a single correlation time tau and T1 depends only upon tau and gamma rms and not the detailed model of motion. Our analysis shows that, at 22 degrees C, tau is in the 1-5-ns range for all samples and gamma rms is 10 degrees, 9 degrees, and 5.5 degrees for the non-cross-linked, cross-linked, and mineralized samples, respectively. At -35 degrees C, gamma rms is less than 3 degrees for all samples. These results show that mineral and low temperature significantly restrict the amplitude of nanosecond motions of the collagen backbone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Measurements of the perturbed gamma-gamma directional correlation were made for the 173-247 keV cascade in 111Cd at the In ion site in dipalmitoylphosphatidylcholine liposomes. A time-dependent electric quadrupole interaction was observed. Below the order in equilibrium fluid phase transition temperature the exponential damping coefficient was lambda 2 = 0.033 +/- 0.007 ns-1. Above the transition temperature the coefficient was lambda 2 = 0.015 +/- 0.006 ns-1 indicating a twofold increase in molecular mobility in the disordered phase. Absolute values for the motional correlation time, tau c, were estimated to be on the order of a few nanoseconds. The presence of cholesterol was found to cause no significant difference in the molecular mobility of the phosphatidylcholine head groups in the ordered and fluid states.  相似文献   

11.
Experiments were conducted on albino rats; it was revealed that an increase in CO2 content in the inspired air (3.8%) caused disturbances in tyrosine and tryptophane metabolism. The activity of tyrosine-aminotranspherase and of tryptophane-oxygenase proved to increase in the liver; blood serum displayed a reduced concentration of free tyrosine and free total tryptophane, but the level of free tryptophane obtained by dialysis proved to rise. A possible significance of these deviations in endogenous blastomogenesis is discussed.  相似文献   

12.
D Huster  L Xiao  M Hong 《Biochemistry》2001,40(25):7662-7674
Solid-state NMR spectroscopy was employed to study the molecular dynamics of the colicin Ia channel domain in the soluble and membrane-bound states. In the soluble state, the protein executes small-amplitude librations (with root-mean-square angular fluctuations of 0-10 degrees ) in the backbone and larger-amplitude motions (16-17 degrees ) in the side chains. Upon membrane binding, the motional amplitudes increase significantly for both the backbone (12-16 degrees ) and side chains (23-29 degrees ), as manifested by the reduction in the C-H and H-H dipolar couplings and (15)N chemical shift anisotropy. These motions occur not only on the pico- to nanosecond time scales, but also on the microsecond time scale, as revealed by the (1)H rotating-frame spin-lattice relaxation times. Average motional correlation times of 0.8 and 1.2 micros were extracted for the soluble and membrane-bound states, respectively. In comparison, both forms of the colicin Ia channel domain are completely immobile on the millisecond scale. These results indicate that the colicin Ia channel domain has enhanced conformational mobility in the lipid bilayer compared to the soluble state. This membrane-induced mobility increase is consistent with the loss of tertiary structure of the protein in the membrane, which was previously suggested by the extended helical array model [Zakharov et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4282-4287]. An extended structure would also facilitate protein interactions with the mobile lipids and thus increase the protein internal motions. We speculate that the large mobility of the membrane-bound colicin Ia channel domain is a prerequisite for channel opening in the presence of a voltage gradient.  相似文献   

13.
The temperature dependences of fluorescence and phosphorescence spectra maxima of chromophor labels--endogenic (tryptophan) and exogenic (eosinisothiocyanate)--were measured for the preparations of photosynthetic membranes and reaction centers from Rhodospirillum rubrum. It was found that the dipole mobility of protein-lipid matrix in the vicinity of the chromophores intensified markedly with a temperature rise from 150 to 300K resulting in the corresponding relaxation time tau r decrease from 10(0) to 10(-8) s. The efficiency of direct transfer of the photomobilized electron in the system of quinone acceptors (A1- leads to A2) of reaction centers (characteristic half-times of the process being 10(-3) divided by 10(-4) s) was shown also to increase sharply at temperatures higher than 200K parallel to the enhancement of molecular motions with tau r approximately 10(-8) s. Meanwhile, changes observed in the rate of recombination of primary photoproducts, i.e. an oxidized bacteriochlorophyll dimer, P+ and a reduced acceptor, A1- (characteristic half-time of 10(-1) divided by 10(-2) s) and the activization of low-frequency motions with tau r approximately 10(-3) s in the external layers and tau r less than 1 s in the internal parts of the reaction centers protein develop over the same range of low temperatures (150-220 K). The nature of interactions which determine the dependence of the photosynthetic electron transport on the molecular mobility of the membrane proteins is discussed.  相似文献   

14.
To study effects of cigarette smoke on the cytoplasmic motility (CM) of alveolar macrophages (AM), we measured remanent field strength (RFS) in dogs in vivo. Four days after instillation of ferrimagnetic particles (Fe3O4, 3 mg/kg) into the right lower lobe bronchus, RFS was measured at the body surface immediately after magnetization of the Fe3O4 particles by an externally applied magnetic field. RFS decreased with time due to particle rotation (relaxation), which is thought to be inversely related to CM of AM (J. Appl. Physiol. 55: 1196-1202, 1983). The initial relaxation curve was fitted to an exponential function. The relaxation rate (lambda 0) increased during cigarette smoke inhalation and returned to base-line values within 15 min. With the inhalation of the smoke of up to five cigarettes, peak lambda 0 was increased; with a further increase in the number of cigarettes, the effect of cigarette smoke decreased or disappeared. Nicotine injection and acetylcholine inhalation increased respiratory resistance to a degree similar to that observed with cigarette smoke but did not change lambda 0. However, either substance P (SP) or capsaicin injection increased lambda 0 in a fashion similar to that noted with cigarette smoke inhalation. Repeated administration of SP produced a significant tachyphylaxis of the effect, and capsaicin did not increase lambda 0 after the cigarette smoke-induced tachyphylaxis of the effect. Colchicine inhibited the cigarette smoke-induced increase in lambda 0. These results suggest that cigarette smoke increases CM of AM, probably through the release of tachykinins including SP from sensory nerves in the lung.  相似文献   

15.
Although present in many patients with heart failure and a normal ejection fraction, the role of isolated impairments in active myocardial relaxation in the genesis of elevated filling pressures is not well characterized. Because of difficulties in determining the effect of prolonged myocardial relaxation in vivo, we used a cardiovascular simulated computer model. The effect of myocardial relaxation, as assessed by tau (exponential time constant of relaxation), on pulmonary vein pressure (PVP) and left ventricular end-diastolic pressure (LVEDP) was investigated over a wide range of tau values (20-100 ms) and heart rate (60-140 beats/min) while keeping end-diastolic volume constant. Cardiac output was recorded over a wide range of tau and heart rate while keeping PVP constant. The effect of systolic intervals was investigated by changing time to end systole at the same heart rate. At a heart rate of 60 beats/min, increases in tau from a baseline to extreme value of 100 ms cause only a minor increase in PVP of 3 mmHg. In contrast, at 120 beats/min, the same increase in tau increases PVP by 23 mmHg. An increase in filling pressures at high heart rates was attributable to incomplete relaxation. The PVP-LVEDP gradient was not constant and increased with increasing tau and heart rate. Prolonged systolic intervals augmented the effects of tau on PVP. Impaired myocardial relaxation is an important determinant of PVP and cardiac output only during rapid heart rate and especially when combined with prolonged systolic intervals. These findings clarify the role of myocardial relaxation in the pathogenesis of elevated filling pressures characteristic of heart failure.  相似文献   

16.
P Fajer  P F Knowles  D Marsh 《Biochemistry》1989,28(13):5634-5643
Cytochrome oxidase from yeast has been covalently labeled with a nitroxide derivative of maleimide and reconstituted in lipid-substituted complexes with dimyristoyl-, dioleoyl-, or dielaidoyl-phosphatidylcholine. The rotational mobility of the enzyme in the complexes has been studied as a function of temperature and time, and of lipid/protein ratio, using saturation-transfer electron spin resonance spectroscopy. For complexes with dimyristoylphosphatidylcholine, the rotational mobility of the protein decreases abruptly below the gel-to-fluid-phase transition. This change is accompanied by a lateral segregation of the protein, as seen by freeze-fracture electron microscopy, and by an increase in the activation energy for the enzymatic activity. A time-dependent decrease in the rotational motion of the protein is observed on incubating at temperatures in the fluid phase of the lipid. This corresponds with a time-dependent loss of enzyme activity observed on incubation at temperatures in the fluid phase, but not at temperatures in the gel phase, over a period of 3 h. The rotational mobility decreases with increasing protein concentration in the complexes, both in the fluid and in the gel phases. The dependence of the protein mobility on lipid/protein ratio can be interpreted quantitatively in terms of the effect of increased random protein-protein contacts in the fluid phase. The maximum limiting rotational correlation time for the protein diffusion at high lipid/protein ratios in the fluid phase is tau R[[ approximately equal to 25 microseconds, suggesting that the protein is present as either a monomer or more probably a dimer in the reconstituted membrane.  相似文献   

17.
The glass transition temperature, T(g), and enthalpy relaxation of amorphous lactose glass were investigated by differential scanning calorimetry (DSC) for isothermal aging periods at various temperatures (25, 60, 75, and 90 degrees C) below T(g). Both T(g) and enthalpy relaxation were found to increase with increasing aging time and temperature. The enthalpy relaxation increased approximately exponentially with aging time at a temperature (90 degrees C) close to T(g) (102 degrees C). There was no significant change observed in the enthalpy relaxation around room temperature (25 degrees C) over an aging period of 1month. The Kohlrausch-Williams-Watts (KWW) model was able to fit the experimental enthalpy relaxation data well. The relaxation distribution parameter (beta) was determined to be in the range 0.81-0.89. The enthalpy relaxation time constant (tau) increased with decreasing aging temperature. The observed enthalpy relaxation data showed that molecular mobility in amorphous lactose glass was higher at temperatures closer to T(g). Lactose glass was stable for a long time at 25 degrees C. These findings should be helpful for improving the processing and storage stability of amorphous lactose and lactose containing food and pharmaceutical products.  相似文献   

18.
Conformational plasticity of the lipid transfer protein SCP2   总被引:1,自引:0,他引:1  
Filipp FV  Sattler M 《Biochemistry》2007,46(27):7980-7991
The nonspecific lipid transfer protein sterol carrier protein 2 (SCP2) is involved in organellar fatty acid metabolism. A hydrophobic cavity in the structure of SCP2 accommodates a wide variety of apolar ligands such as cholesterol derivatives or fatty acyl-coenzyme A (CoA) conjugates. The properties of this nonspecific lipid binding pocket are explored using NMR chemical shift perturbations, paramagnetic relaxation enhancement, amide hydrogen exchange, and 15N relaxation measurements. A common binding cavity shared by different physiological ligands is identified. NMR relaxation measurements reveal that residues in the three C-terminal alpha-helices within the lipid binding region exhibit mobility at fast (picosecond to nanosecond) and slow (microsecond to millisecond) time scales. Ligand binding is associated with a considerable loss of peptide backbone mobility. The observed conformational dynamics in SCP2 may play a role for the access of hydrophobic ligands to an occluded binding pocket. The C-terminal peroxisomal targeting signal of SCP2 is specifically recognized by the Pex5p receptor protein, which conducts cargo proteins toward the peroxisomal organelle. Neither the C-terminal targeting signal nor the N-terminal precursor sequence interferes with lipid binding by SCP2. The alpha-helices involved in lipid binding also mediate a secondary interaction interface with the Pex5p receptor. Silencing of conformational dynamics of the peptide backbone in these helices upon either lipid or Pex5p binding might communicate the loading state of the cargo protein to the targeting receptor.  相似文献   

19.
20.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号