首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three cyclic peptides - cyclo(GlyAlaTyrLeuAla), cyclo(GlyProTyrLeuAla) and cyclo(GlyTyrGlyGlyProPhePro) - isolated and identified from medicinal herbs were chosen as model cyclic peptides to study the influence of the linear precursors and coupling reagents on cyclization. The 17 linear precursors of these three cyclic peptides were synthesized and cyclized using 3-(diethoxyphosphoryloxy)-(1-3)-benzotriazin-4 (3H)-one (DEPBT) as the major coupling reagent. The present work shows that: (i) the effects of linear peptide precursors on the cyclization are complex but some guidelines for choosing suitable precursor for cyclization could be considered; and (ii) DEPBT results in a higher cyclization yield compared with other coupling reagents. In addition, it was confirmed that peptides containing alternating D and L residues favor cyclization.  相似文献   

2.
Peptide cyclization is an important tool for overcoming the limitations of linear peptides as drugs. Backbone cyclization (BC) has advantages over side chain (SC) cyclization because it combines N-alkylation for extra peptide stability. However, the appropriate building blocks for BC are not yet commercially available. This problem can be overcome by preparing SC cyclic peptide analogs of the most active BC peptide using commercially available building blocks. We have recently developed BC peptides that inhibit the HIV-1 integrase enzyme (IN) activity and HIV-1 replication in infected cells. Here we used this system as a model for systematically comparing the BC and SC cyclization modes using biophysical, biochemical and structural methods. The most potent SC cyclic peptide was active almost as the BC peptide and inhibited IN activity in vitro and blocked IN activity in cells even after 6 days. We conclude that both cyclization types have their respective advantages: The BC peptide is more active and stable, probably due to the N-alkylation, while SC cyclic peptides are easier to synthesize. Due to the high costs and efforts involved in preparing BC peptides, SC may be a more approachable method in many cases. We suggest that both methods are interchangeable.  相似文献   

3.

Background

Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the “antimicrobial centre” of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.

Methodology/Principal Findings

HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.

Conclusions/Significance

Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications.  相似文献   

4.
Lithium salts have been reported to mediate the solubilization of peptides in organic solvents in 1989 (Seebach, D., Thaler, A. & Beck, A. K. Helv. Chim. Acta 1989; 72, 857-867). The use of Li salts in an organic solvent to influence cyclization of a reactive peptide that only polymerizes in an aqueous solvent, has not been reported. Here, the selective and facile cyclization of N-chloroacetylated, C-cysteine amide peptides from the C4 domain of HIV-1 gp120 in LiCl/DMF solvent systems is demonstrated. The addition of stoichiometric amounts of Tris base to 1 mg/mL peptide in LiCl/DMF solutions was sufficient to drive the cyclization to completion within 3 h at ambient temperatures. Cyclic peptides were the only detectable reaction products and these were confirmed using reversed-phase HPLC and mass spectrometric analyses of the final products. In aqueous solutions at pH 7.4, only polymers were obtained as judged by HPLC and SDS-PAGE. The method of using Li salts in an organic solvent to enhance the cyclization of unprotected amphipathic peptides may be useful in many situations beyond those described here.  相似文献   

5.
非核糖体肽合成酶(nonribosomal peptide synthetases,NRPSs)能以多载体巯基化模板机制合成各种结构复杂、种类繁多的次生代谢非核糖体环肽.根据环肽末端环化的方式,可分为两大类:大环内酯型和内酰胺型.负责非核糖体环肽最终环化的硫酯酶(thioesterase,TE)属于α/β水解酶超家族.该家族包括:脂酶、蛋白酶、酯酶等,其共有特征是含有保守的催化三元件(Ser-His-Asp),起到终止反应和释放产物的功能. TE具有区域定向性(regiospecific)、化学定向性(chemospecific)及立体定向性(stereospecific)的特点,在非核糖体肽(nonribosomal peptide,NRP)的合成反应中具有决定性作用,直接影响到最终环肽的生成. 同时,TE由于其特有的环化和水解的双重活性,在体外的线性多肽环化中越来越受到众多学者的关注. 综合国内外相关文献,本文着重从TE介导下的产物释放机制和影响因素两个方面综述非核糖体末端硫酯酶的研究进展及其应用.  相似文献   

6.
7.
C Gilon  D Halle  M Chorev  Z Selinger  G Byk 《Biopolymers》1991,31(6):745-750
This article describes a new concept of medium- and long-range cyclization of peptides through "backbone cyclization." In this approach, conformational constraints are conferred on a peptide by linking omega-substituted alkylidene chains replacing N(alpha) or C(alpha) hydrogens in a peptidic backbone. Backbone cyclization, which is divided into N-backbone and C-backbone cyclizations, allow for new modes of cyclization in addition to the classical ones that are limited to cyclization through the side chains and/or the amino or carboxyl terminal groups. The article also describes the application of the N-backbone cyclization to the active region of substance P. Conformational constraints of this peptide by the classical cyclization modes led to inactive analogues whereas N-backbone cyclization provided an active, selective, and metabolically stable analogue.  相似文献   

8.
Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential.  相似文献   

9.
Oren Z  Shai Y 《Biochemistry》2000,39(20):6103-6114
The amphipathic alpha-helical structure is considered to be a prerequisite for the lytic activity of a large group of cytolytic peptides. However, despite numerous studies on the contribution of various parameters to their structure and activity, the importance of linearity has not been examined. In the present study we functionally and structurally characterized a linear amphipathic alpha-helical peptide (wt peptide), its diastereomer, and cyclic analogues of both. Using analogues with the same sequence of hydrophobic and positively charged amino acids, but with different propensities to form a helical structure, we were able to examine the contribution of linearity to helix formation, bilogical function, and membrane binding and permeation. Importantly, we found that cyclization increases the selectivity between bacteria and human erythrocytes by substantially reducing the hemolytic activity of the cyclic peptides compared with the linear peptides. Moreover, whereas the wt peptide was highly active toward gram(+) bacteria, its cyclic counterpart is active toward both gram(+) and gram(-) bacteria. These findings are correlated with an impaired ability of the cyclic analogues to bind and permeate zwitterionic phospholipid membranes compared with their linear counterparts and an increase in the binding and permeating activity of the cyclic wt peptide toward negatively charged membranes. Furthermore, cyclization abolished the oligomerization of the linear wt peptide in solution and in SDS, suggesting an additional factor that may account for the difference in the spectrum of antibacterial activity between the linear and the cyclic wt peptides. Interestingly, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that, despite cyclization and incorporation of 33% D-amino acids along the peptide backbone, the membrane environment can impose a predominantly helical structure on the peptides, which is required for their bilogical function. Overall, our results indicate that linearity is not a prerequisite for lytic activity of amphipathic alpha-helical peptides but rather affects the selectivity between gram(+) and gram(-) bacteria and between mammalian cells and bacteria. In addition, the combination of incorporating of D-amino acids into lytic peptides and their cyclization open the way for developing a new group of antimicrobial peptides with improved properties for treating infectious diseases.  相似文献   

10.
Covalent cyclization of peptides is an important tool in structure-function analysis of bioactive peptides, because it constrains the molecule to enrich or exclude the receptor-bound conformation. Previously we described a 2-step procedure for cyclizing purified, native peptides in aqueous solution by reacting a Met or Lys side chain with an iodoacetylated N-terminus (Wood SJ, Wetzel R, 1992a, Int J Pept Protein Res 39:533-539). We show here that the cyclization reaction scheme can be extended to peptides excised from proteins by endo-LysC proteolysis, which generates fragments terminating with Lys. To illustrate the method, we used an immunoglobulin VL domain (REI-VL) with an RGD-containing sequence engineered into its CDR3 and flanked by Lys residues. This REI-VL/RGD hybrid displayed an IC50 of 24 nM for ligand competition at the platelet fibrinogen receptor alpha IIb beta 3. The RGD-containing peptide excised by endo-LysC from the REI-VL presentation scaffold exhibited an IC50 of about 50 nM, and the corresponding cyclized peptide, and IC50 of about 10 nM. Significantly, both the N alpha-acylation and the cyclization reactions occur efficiently even in the context of the other endo-LysC fragments of REI-VL, which suggests that the reaction may prove useful in converting mixtures of endo-LysC products of many proteins into the corresponding cyclic peptides in situ.  相似文献   

11.
The use of carboethoxysulfenyl chloride for disulfide bond formation and concomitant cyclization of five peptides was investigated. Even though cyclic peptides were obtained very rapidly and in good yields when cyclization was performed in aqueous media at different pHs (4 to 7), the final crude peptides were found to contain closely related impurities which, in the case of somatostatin and pressinoic acid, were not generated by air oxidation. This observation may limit the use of carboethoxysulfenyl chloride to those cases where other methods of disulfide bond formation prove inadequate.  相似文献   

12.
Dathe M  Nikolenko H  Klose J  Bienert M 《Biochemistry》2004,43(28):9140-9150
Arginine- and tryptophan-rich motifs have been identified in antimicrobial peptides with various secondary structures. We synthesized a set of linear hexapeptides derived from the sequence AcRRWWRF-NH(2) by substitution of tryptophan (W) by tyrosine (Y) or naphthylalanine (Nal) and by replacement of arginine (R) by lysine (K) to investigate the role of cationic charge and aromatic residues in membrane activity and selectivity. A second set of corresponding head-to-tail cyclic analogues was prepared to analyze the role of conformational constraints. The biological activity of the linear peptides followed the order Nal- > W- > Y-containing compounds and slightly decreased upon R-K substitution. A pronounced activity-improving and bacterial selectivity-enhancing effect was found upon cyclization of the R- and W-bearing parent peptide, whereas the activity-modifying effect of cyclization of Y- and Nal-containing peptides was low. The analysis of the driving forces of peptide interaction with model membranes showed that the activities correlated with the partition coefficients and the depths of peptide insertion into neutral and negatively charged lipid bilayers. Spectroscopic studies, RP-HPLC, and titration calorimetry implied that the combination of cationic and aromatic amino acid composition and conformational rigidity afforded a membrane-active, amphipathic structure with a highly charged face opposed by a cluster of aromatic side chains. However, threshold values of low and high hydrophobicity seemed to exist beyond which the activity-enhancing effect of cyclization was negligible. The results suggest that cyclization of small peptides of an appropriate amino acid composition may serve as a promising strategy in the design of antimicrobial peptides.  相似文献   

13.
RPHPLC of the tryptic digest of lysine blocked group A streptococcal PepM49 protein (DHP-PepM49) consistently yielded, among others, two pairs of peptides which were well resolved, eluted in tandem, and had identical amino acid compositions. In each pair, the earlier eluting peptide was readily amenable to sequencing and yielded an amino-terminal glutamine whereas the later eluting peptide could not be sequenced. Mass spectral analysis revealed that each of these pairs of peptides differed in mass corresponding to the loss of ammonia. These data suggested that the later eluting peptide in each pair is a result of cyclization of the amino-terminal glutamine residue to pyroglutamic acid, which apparently leads to an increase in the hydrophobicity of the peptide. A kinetic analysis of the tryptic digestion of the DHP-PepM49 protein revealed that the cyclized form of the peptides were essentially absent during the initial time and increased with time of incubation, with a concomitant decrease in the uncyclized form. In 0.2 M ammonium bicarbonate at 37 degrees, nearly 44% conversion of the glutaminyl peptides to the pyroglutamyl peptides was observed in 24 h. This conversion was accelerated in sodium phosphate buffer relative to that in ammonium bicarbonate whereas it had a significantly lower rate in ammonium acetate buffer. The conversion was also temperature dependent, with essentially no cyclization at 0 degree, in all the three buffers. Thus, an extended digestion at 0 degree or a brief digestion at 37 degrees in ammonium acetate was found to be a suitable condition for limiting the cyclization of amino-terminal glutamine residues of PepM49 peptides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The monoclonal antibody tAb2 binds the N-terminal sequence of transforming growth factor alpha, VVSHFND. With the help of combinatorial peptide libraries it is possible to find homologous peptides that bind tAb2 with an affinity similar to that of the epitope. The conformational flexibility of short peptides can be constrained by cyclization in order to improve their affinity to the antibody and their stability towards proteolysis. Two cyclic peptides which are cross-reactive binders for tAb2 were selected earlier using combinatorial peptide libraries. One is cyclized by an amide bond between the N-alpha group and the side-chain of the last residue (cyclo-SHFNEYE), and the other by a disulfide bridge (cyclo-CSHFNDYC). The complex structures of tAb2 with the linear epitope peptide VVSHFND and with cyclo-SHFNEYE were determined by X-ray diffraction. Both peptides show a similar conformation and binding pattern in the complex. The linear peptide SHFNEYE does not bind tAb2, but cyclo-SHFNEYE is stabilized in a loop conformation suitable for binding. Hence the cyclization counteracts the exchange of aspartate in the epitope sequence to glutamate. Isothermal titration calorimetry was used to characterize the binding energetics of tAb2 with the two cyclic peptides and the epitope peptide. The binding reactions are enthalpically driven with an unfavorable entropic contribution under all measured conditions. The association reactions are characterized by negative DeltaC(p) changes and by the uptake of one proton per binding site. A putative candidate for proton uptake during binding is the histidine residue in each of the peptides. Hydrogen bonds and the putative formation of an electrostatic pair between the protonated histidine and a carboxy group may contribute markedly to the favorable enthalpy of complex formation.Implications to cyclization of peptides for stabilization are discussed.  相似文献   

15.
Linear and cyclic analogues of angiotensin were studied to clarify the structural properties of peptides possessing a histamine-releasing action. It was shown that an increase in the angiotensin basicity or its cyclization leads to the appearance of the histamine-releasing activity which is not characteristic of the natural hormone. This increase in the basicity of the angiotensin cyclic analogs results in highly active compounds with the EC50 exceeding by 2 to 3 orders of magnitude that of polymyxin B or substance 48/80. The data obtained confirm the hypothesis postulating a high degree of amphiphilicity for histamine-releasing peptides. As a result of cyclization of angiotensin analogues, a block of positively charged amino acids with an oppositely located hydrophobic region is formed. This finding can be of importance for the effective interaction of peptides with cellular structures as well as for the stimulation of secretory processes.  相似文献   

16.
Summary Our recent studies on the synthetic methodology of head to tail cyclization of linear peptides are summarized in this paper. Ten cyclopeptides including six cyclopentapeptides as candidates of LHRH antagonists, two cyclopentapeptides, and two cycloheptapeptides which were isolated from Chinese medicinal herbs were synthesized using an organic phosphorus reagent, DEPBT, and were selected as model peptides for studying the factors that influence the cyclization yields. Our results show that the coupling reagent choice and linear peptide sequence are the two most important considerations that determine the success or failure for a cyclization reaction. Effects of different metal ions on the cyclization were also studied. The results suggest that Na+ is suitable for promoting the cyclization of linear pentapeptides while bigger Cs+ is better for promotion of the ring closure of linear heptapeptides. Application of Pac ester in thioester method for synthesis of cyclopeptides was studied. N-protected amino acid and peptide thioesters with Pac group were readily purified in each step of synthesis. The Pac group was easy to remove with zinc powder in acetic acid and its flexibility allows elongatation of the peptide chain from either N-or C-terminal.  相似文献   

17.
Human glandular kallikrein (KLK2) is a highly prostate-specific serine protease, which is mainly excreted into the seminal fluid, but part of which is also secreted into circulation from prostatic tumors. Since the expression level of KLK2 is elevated in aggressive tumors and it has been suggested to mediate the metastasis of prostate cancer, inhibition of the proteolytic activity of KLK2 is of potential therapeutic value. We have previously identified several KLK2-specific linear peptides by phage display technology. Two of its synthetic analogs, A R R P A P A P G (KLK2a) and G A A R F K V W W A A G (KLK2b), show specific inhibition of KLK2 but their sensitivity to proteolysis in vivo may restrict their potential use as therapeutic agents. In order to improve the stability of the linear peptides for in vivo use, we have prepared cyclic analogs and compared their biological activity and their structural stability. A series of cyclic variants with cysteine bridges were synthesized. Cyclization inactivated one peptide (KLK2a) and its derivatives, while the other peptide (KLK2b) and its derivatives remained active. Furthermore, backbone cyclization of KLK2b improved significantly the resistance against proteolysis by trypsin and human plasma. Nuclear magnetic resonance studies showed that cyclization of the KLK2b peptides does not make the structures more rigid. In conclusion, we have shown that backbone cyclization of KLK2 inhibitory peptides can be used to increase stability without losing biological activity. This should render the peptides more useful for in vivo applications, such as tumor imaging and prostate cancer targeting.  相似文献   

18.
The traceless Staudinger ligation has recently found various applications in the field of peptide synthesis and modification, including immobilization and cyclization strategies. In this report, we utilize the traceless Staudinger ligation in the formation of amide bonds, which allows the acquisition of acylated aminosugars and peptides as well as the cyclization of peptides. A key element in these synthetic procedures is the use of a borane-protected phosphinomethanethiol, which is demonstrated to be prone towards oxidation in its unprotected form, during the synthesis of phosphinothioesters. In combination with acidic and basic deprotection strategies for the borane-protected phosphinothioesters, amide bonds can be formed in the presence of azides in moderate to good overall yields.  相似文献   

19.
Receptor-derived peptides have played an important role in elucidating chemokine-receptor interactions. For the inflammatory chemokine CXC-class chemokine ligand 8 (CXCL8), a site II-mimetic peptide has been derived from parts of extracellular loops 2 and 3 and adjacent transmembrane helices of its receptor CXC-class chemokine receptor 1 (Helmer et al., RSC Adv., 2015, 5 , 25657). The peptide sequence with a C-terminal glutamine did not bind to CXCL8, whereas one with a C-terminal glutamate did but with low micromolar affinity. We sought to improve the affinity and protease stability of the latter peptide through cyclization while also cyclizing the former for control purposes. To identify a cyclization strategy that permits a receptor-like interaction, we conducted a molecular dynamics simulation of CXCL8 in complex with full-length CXC-class chemokine receptor 1. We introduced a linker to provide an appropriate spacing between the termini and used an on-resin side-chain-to-tail cyclization strategy. Upon chemokine binding, the fluorescence intensity of the tetramethylrhodamine (TAMRA)-labeled cyclic peptides increased whereas the fluorescence anisotropy decreased. Additional molecular dynamics simulations indicated that the fluorophore interacts with the peptide macrocycle so that chemokine binding leads to its displacement and observed changes in fluorescence. Macrocyclization of both 18-amino acid-long peptides led to the same low micromolar affinity for CXCL8. Likewise, both TAMRA-labeled linear peptides interacted with CXCL8 with similar affinities. Interestingly, the linear TAMRA-labeled peptides were more resistant to tryptic digestion than the unlabeled counterparts, whereas the cyclized peptides were not degraded at all. We conclude that the TAMRA fluorophore tends to interact with peptides altering their protease stability and behavior in fluorescence-based assays.  相似文献   

20.
A novel method for peptide cyclization in solution: the azo cyclization is presented herein. Ring closure by forming an azo bridge was achieved in situ by connecting the corresponding side chains of para amino phenylalanine (Pap) residues to those of tyrosine or histidine residues present in the corresponding linear precursors. The reaction was performed using an initial diazotization step in acidic media followed by intramolecular azo cyclization in a mild basic media. This new method of cyclization is facile, applicable to various sequences and results in a high yield of pure products and hence is suggested as an additional method for peptide cyclization. Here we report the successful utilization of this method for the synthesis of 10 new cyclic azo peptides, derived from RGD, GnRH, Tuftsin, VIP and SV40 NLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号