首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acidic environment is important for sperm maturation in the epididymis and also helps to maintain mature sperm in an immotile state during storage in this organ. Both an Na+/H+ exchanger and an H+ATPase have been implicated in this process. The H+ATPase is concentrated in specialized apical (and/or narrow) and clear cells of the epididymis, while the Na+/H+ exchanger has not yet been localized in situ. As in other proton-secreting epithelia, bicarbonate transport occurs in the epididymis, where it is implicated in luminal acidification. In this study we used an antibody raised against a fusion protein (maltose-binding protein: MBP-NBC-5) from the C-terminus of the recently cloned rat kidney Na+/HCO3- cotransporter (NBC) to localize this protein in the epididymis and vas deferens of the rat. The distribution of the respective mRNA was mapped by in situ hybridization. NBC message was strongly expressed in the initial segment and the intermediate zone of the epididymis, and the NBC-5 antibody gave a strong basolateral staining in both principal cells and apical/narrow cells in this region. Western blotting revealed a single band at about 160 kDa in the epididymis. The intensity of staining as well as mRNA levels decreased in the cauda epididymidis and in the vas deferens, where only weak staining was seen. Basolateral NBC may function in parallel with apical proton secretion to regulate luminal acidification and/or bicarbonate reabsorption in the excurrent duct system.  相似文献   

2.
There is growing evidence that secretin, the first hormone discovered in our history, has functions in the brain other than in the gastrointestinal tract. This article reports for the first time that secretin and its receptor mRNAs are produced in distinct cell types within the epididymis. To test if secretin affects electrolyte transport in the epididymis, we measured short-circuit current (Isc) in cultured epididymal epithelia and found secretin dose-dependently stimulated Isc. Ion substitution experiments and use of pharmacological agents inferred that the stimulated Isc is a result of concurrent electrogenic chloride and bicarbonate secretion. It is further shown that secretin and pituitary adenylate cyclase-activating polypeptide (PACAP) function via totally different mechanisms: 1) PACAP works only from the apical side of the epithelium to stimulate chloride and not bicarbonate secretion, while secretin acts on the apical and basolateral sides to stimulate chloride and bicarbonate secretion. 2) the stimulation by PACAP but not secretin requires local prostaglandin synthesis. By immunocytochemical staining, secretin is localized in the principal cells of the initial segment and caput epididymidis, whereas secretin receptor is present in the principal cells of the proximal as well as the distal part of the epididymis. This pattern of distribution appears to be consistent with the idea that secretin is secreted by the proximal epididymis and acts on the proximal and distal epididymis in an autocrine and paracrine fashion. Its function is to control secretion of electrolytes and water.  相似文献   

3.
Aquaporin 9 expression along the male reproductive tract   总被引:10,自引:0,他引:10  
Fluid movement across epithelia lining portions of the male reproductive tract is important for modulating the luminal environment in which sperm mature and reside, and for increasing sperm concentration. Some regions of the male reproductive tract express aquaporin (AQP) 1 and/or AQP2, but these transmembrane water channels are not detectable in the epididymis. Therefore, we used a specific antibody to map the cellular distribution of another AQP, AQP9 (which is permeable to water and to some solutes), in the male reproductive tract. AQP9 is enriched on the apical (but not basolateral) membrane of nonciliated cells in the efferent duct and principal cells of the epididymis (rat and human) and vas deferens, where it could play a role in fluid reabsorption. Western blotting revealed a strong 30-kDa band in brush-border membrane vesicles isolated from the epididymis. AQP9 is also expressed in epithelial cells of the prostate and coagulating gland where fluid transport across the epithelium is important for secretory activity. However, it was undetectable in the seminal vesicle, suggesting that an alternative fluid transport pathway may be present in this tissue. Intracellular vesicles in epithelial cells along the reproductive tract were generally poorly stained for AQP9. Furthermore, the apical membrane distribution of AQP9 was unaffected by microtubule disruption. These data suggest that AQP9 is a constitutively inserted apical membrane protein and that its cell-surface expression is not acutely regulated by vesicular trafficking. AQP9 was detectable in the epididymis and vas deferens of 1-wk postnatal rats, but its expression was comparable with adult rats only after 3--4 wk. AQP9 could provide a route via which apical fluid and solute transport occurs in several regions of the male reproductive tract. The heterogeneous and segment-specific expression of AQP9 and other aquaporins along the male reproductive tract shown in this and in our previous studies suggests that fluid reabsorption and secretion in these tissues could be locally modulated by physiological regulation of AQP expression and/or function.  相似文献   

4.
5.
Spermatozoa are subjected to major changes as they pass through the epididymal duct. The aim of the present study was to describe the distribution of carbonic anhydrase (CA) in the mouse testis and epididymis using a histochemical technique showing total catalytic activity, in combination with immunohistochemistry for the two important isoforms CAs II and IV. By comparing normal mice with CA II-deficient mice, we were able to study membrane-bound CA without influence from the ubiquitous cytoplasmic CA II. Spermatozoa, when studied in both the scanning electron and light microscope, were found to pickup membrane-bound CA IV during their passage through the epididymal duct. The transfer appeared to take place in the proximal part of the corpus, where the apical membrane and vesicles of principal cells were richly supplied with CA IV. In addition to CA IV, another membrane-bound isozyme was located in basolateral membranes of principal cells. Cytoplasmic CA II was found in varying amounts in apical/narrow cells and principal cells of the corpus in control animals. The significance of CA for pH-regulating processes vital for sperm storage and motility is discussed. A function in HCO3- transport during sperm capacitation at fertilization is suggested for the CA IV found in spermatozoa.  相似文献   

6.
In chondrichthyes, the process of spermatogenesis produces a spermatocyst composed of Sertoli cells and their cohort of associated spermatozoa linearly arrayed and embedded in the apical end of the Sertoli cell. The extratesticular ducts consist of paired epididymis, ductus deferens, isthmus, and seminal vesicles. In transit through the ducts, spermatozoa undergo modification by secretions of the extratesticular ducts and associated glands, i.e., Leydig gland. In mature animals, the anterior portion of the mesonephros is specialized as the Leydig gland that connects to both the epididymis and ductus deferens and elaborates seminal fluid and matrix that contribute to the spermatophore or spermatozeugmata, depending on the species. Leydig gland epithelium is simple columnar with secretory and ciliated cells. Secretory cells have periodic acid-Schiff positive (PAS+) apical secretory granules. In the holocephalan elephant fish, Callorhynchus milii, sperm and Sertoli cell fragments enter the first major extratesticular duct, the epididymis. In the epididymis, spermatozoa are initially present as individual sperm but soon begin to laterally associate so that they are aligned head-to-head. The epididymis is a highly convoluted tubule with a small bore lumen and an epithelium consisting of scant ciliated and relatively more secretory cells. Secretory activity of both the Leydig gland and epididymis contribute to the nascent spermatophores, which begin as gel-like aggregations of secretory product in which sperm are embedded. Fully formed spermatophores occur in the ductus. The simple columnar epithelium has both ciliated and secretory cells. The spermatophore is regionalized into a PAS+ and Alcian-blue-positive (AB+) cortex and a distinctively PAS+, and less AB+ medulla. Laterally aligned sperm occupy the medulla and are surrounded by a clear zone separate from the spermatophore matrix. Grossly, the seminal vesicles are characterized by spiral partitions of the epithelium that project into the lumen, much like a spiral staircase. Each partition is staggered with respect to adjacent partitions while the aperture is eccentric. The generally nonsecretory epithelium of the seminal vesicle is simple columnar with both microvillar and ciliated cells.  相似文献   

7.
In rats, an acidic luminal pH maintains sperm quiescence during storage in the epididymis. We recently showed that vacuolar H(+)ATPase-rich cells in the epididymis and vas deferens are involved in the acidification of these segments. Treatment of rats with cadmium (Cd) leads to alkalinization of this fluid by an unknown mechanism. Because Cd may affect H(+)ATPase function, we examined 1) the in vivo effect of Cd poisoning on H(+)ATPase-rich cell morphology and on the abundance and distribution of the 31-kDa H(+)ATPase subunit in cells along the rat epididymis, and 2) the in vitro effect of Cd on H(+)ATPase activity and function in the isolated vas deferens. Immunofluorescence and immunoblotting data from rats treated with Cd for 14-15 days (2 mg Cd/kg body mass/day) showed that 1) H(+)ATPase-positive cells regressed to a prepubertal phenotype, and 2) H(+)ATPase was lost from the apical pole of the cell and was redistributed into an intracellular compartment. In experiments in vitro, Cd inhibited bafilomycin-sensitive ATPase activity in isolated total cell membranes and, as measured using a proton-selective extracellular microelectrode, inhibited proton secretion in isolated vas deferens. We conclude that alkalinization of the tubule fluid in the epididymis and vas deferens of Cd-treated rats may result from the loss of functional H(+)ATPase enzyme in the cell apical domain as well as from a direct inhibition of H(+)ATPase function by Cd.  相似文献   

8.
9.
Vacuolar type H(+)-ATPase is involved in lumenal acidification of the epididymis. This protein is highly expressed in narrow and clear cells where it is located in the apical pole, and it contributes to proton secretion into the lumen. We have previously shown that in rats, epididymal cells rich in H(+)ATPase appear during postnatal development and reach maximal numbers at 3-4 wk of age. The factors that regulate the appearance of these cells have not been investigated, but androgens, estrogens, or both may be involved. This study examined whether neonatal administration of estrogens (diethylstilbestrol [DES] or ethinyl estradiol) or an antiandrogen (flutamide), or the suppression of androgen production via administration of a GnRH antagonist (GnRHa), was able to alter the appearance of cells rich in H(+)-ATPase in the rat epididymis when assessed at age 25 days. Surprisingly, all of these treatments were able to significantly reduce the number of H(+)-ATPase positive cells; this was determined by immunofluorescence and confirmed by Western blotting. In contrast, neonatal coadministration of DES and testosterone maintained the expression of H(+)-ATPase in the epididymis at Day 25 despite the high level of concomitant estrogen exposure. These findings indicate that androgens, acting via the androgen receptor, are essential for the normal development of epididymal cells rich in H(+)-ATPase, and that treatments that interfere directly or indirectly with androgen production (GnRHa, DES) or action (flutamide, DES) will result in reduced expression of H(+)-ATPase. Our findings do not exclude the possibility that estrogens can directly suppress the postnatal development of cells in the epididymis that are rich in H(+)-ATPase, but if this is the case, this suppression can be prevented by testosterone administration.  相似文献   

10.
The distribution of carbonic anhydrase (CA) was studied in the testis and epididymis of mature, male rabbits using a cobalt precipitation method. CA was found only in the endothelium of the capillaries in the testis. The epididymal duct was divided into initial, middle and terminal segments. Strong cytoplasmic CA was present in the apical cells in the initial and middle segments. Vacuoles with CA staining in the membranes were found in the principal cells in the middle segment. Intensely stained basal cells were present in the terminal segment. In the last part of the terminal segment and the first of the ductus deferens the basolateral cell membranes were also stained. The function of the enzyme is discussed especially in relation to acidification of the epididymal fluid and facilitation of CO2 diffusion.  相似文献   

11.
The morphology of the mouse vas deferens still undergoes major changes from birth to 40 days of age, such as differentiation of the mesenchymal cells into fibroblasts and muscle cells, differentiation of the epithelium into basal and columnar epithelial cells, development of stereocilia, and the appearance of smooth endoplasmic reticulum organised in fingerprint-like structures or parallel, flattened saccules. In mutant homozygous DeltaF508 (DeltaF/DeltaF) and knock-out (cf/cf) CFTR mice, strain 129/FvB and 129/C57BL-6, respectively, a similar development occurred until the age of 20 days. At 40 days, however, the lumen was filled with eosinophilic secretions, and sperm cells were absent in the majority of the animals examined, although sperm production in testis and epididymis appeared to be normal. CFTR was localised in the apical membrane and cytoplasm of the vas deferens epithelium from 40 days on but could not be detected in the vas deferens before 20 days or in mutant adult CFTR mice as expected. Western blots of membrane preparations showed that the mature form of CFTR was present in vas deferens and testis but absent in seminal vesicles. Our results suggest that the function of CFTR is probably essential after 20 days in the vas deferens and that its absence or dysfunction may result in a vas deferens with a differentiated epithelium but a collapsed lumen, which could at least temporarily delay the transport of spermatozoa. These observations contrast with those made in the overall majority of CF patients. Mol. Reprod. Dev. 55:125-135, 2000.  相似文献   

12.
13.
Although it has been suggested that epithelial cells of the male reproductive system are involved in apocrine secretion, this method of secretion is not fully understood. In the present study, apocrine secretion was investigated in epithelial principal cells lining the epididymis and vas deferens (VD) of adult mice. The tissues were fixed by cardiac vascular perfusion with glutaraldehyde for routine electron microscope (EM) analysis and Bouin's fixative for light microscope (LM) immunocytochemistry to access functional roles. In the epididymis and VD, the apex of principal cells revealed protrusions of cytoplasm referred to as apical blebs (ABs). The latter contained solely numerous free ribosomes, 20 nm vesicles and few ER cisternae, suggesting segregation of their contents. While some ABs displayed wide areas of contact with the apical principal cell cytoplasm, others showed thin stalk-like attachment points as well as fissures at the junction of the two areas. Together with images of ABs and their contents deep in the lumen, it is suggested that ABs detach from principal cells whereupon they breakdown to release their contents therein. As ABs of the epididymis were immunoreactive for glutathione-S-transferases (GSTs) and ubiquitin, it is proposed that these proteins are synthesized on free ribosomes in ABs and that apocrine secretion represents the manner whereby they enter the lumen to effectively protect sperm from free radical injury and ubiquitinate proteins for degradation, respectively. ABs of the VD were immunoreactive for 3beta-HSD, suggesting that they are also capable of synthesis of steroids with their release via apocrine secretion. Taken together the data provide evidence for apocrine secretion in the adult mouse epididymis and VD that could play important roles in relation to sperm maturation, protection and viability.  相似文献   

14.
A low-bicarbonate concentration and an acidic pH in the luminal fluid of the epididymis and vas deferens are important for sperm maturation. These factors help maintain mature sperm in an immotile but viable state during storage in the cauda epididymidis and vas deferens. Two proton extrusion mechanisms, an Na(+)/H(+) exchanger and an H(+)ATPase, have been proposed to be involved in this luminal acidification process. The Na(+)/H(+) exchanger has not yet been localized in situ, but we have reported that H(+)ATPase is expressed on the apical membrane of apical (or narrow) and clear cells of the epididymis. These cells are enriched in carbonic anhydrase II, indicating the involvement of bicarbonate in the acidification process and suggesting that the epididymis is a site of bicarbonate reabsorption. Previous unsuccessful attempts to localize the Cl/HCO(3) anion exchanger AE1 in rat epididymis did not investigate other anion exchanger (AE) isoforms. In this report, we used a recently described SDS antigen unmasking treatment to localize the Cl/HCO(3) exchanger AE2 in rat and mouse epididymis. AE2 is highly expressed in the initial segment, intermediate zone, and caput epididymidis, where it is located on the basolateral membrane of epithelial cells. The cauda epididymidis and vas deferens also contain basolateral AE2, but in lower amounts. The identity of the AE2 protein was further confirmed by the observation that basolateral AE2 expression was unaltered in the epididymis of AE1-knockout mice. Basolateral AE2 may participate in bicarbonate reabsorption and luminal acidification, and/or may be involved in intracellular pH homeostasis of epithelial cells of the male reproductive tract.  相似文献   

15.
The antennal gland of the crayfish Pacifasticus leniusculus was studied using standard techniques for scanning electron microscopy as well as newer procedures for ultrasonic microdissection. To clarify relationships in the nephron tubule, transmission electron microscopy was employed. The coelomosac contains elongated cells (podocytes) displaying microvilli and extensive apical blebbing. A smooth basal lamina lines the blood space that furnishes hemolymph to the coelomosac. The labyrinth consists of tall columnar cells displaying apical microvilli, numerous blebs that seem to represent an expansion of apical plasma membrane, and lateral interdigitations. The nephron tubule consists of two distinctly different areas: a proximal region of flattened cells with extensive intercellular fusions, and a distal segment of separate, dome-shaped cells. Despite many similarities between the crayfish kidney and the vertebrate nephron, there are striking differences. The amount of surface blebbing that occurs in the coelomosac and labyrinth far exceeds that of the vertebrate nephron and may reflect its importance in the function of the crayfish kidney. The cells of the coelomosac are taller than are the vertebrate podocytes and possess less obvious arms and pedicels. In addition, the proximal segment of the nephron tubule is notable for its intercellular fusions, which are not present in the vertebrate nephron. Although the function of the intercellular fusions is unknown, they may play a role in cellular communication or the redistribution of fluids or electrolytes between cells.  相似文献   

16.
Calcium‐activated chloride channels are involved in several physiological processes including olfactory perception. TMEM16A and TMEM16B, members of the transmembrane protein 16 family (TMEM16), are responsible for calcium‐activated chloride currents in several cells. Both are present in the olfactory epithelium of adult mice, but little is known about their expression during embryonic development. Using immunohistochemistry we studied their expression in the mouse olfactory epithelium at various stages of prenatal development from embryonic day (E) 12.5 to E18.5 as well as in postnatal mice. At E12.5, TMEM16A immunoreactivity was present at the apical surface of the entire olfactory epithelium, but from E16.5 became restricted to a region near the transition zone with the respiratory epithelium, where localized at the apical part of supporting cells and in their microvilli. In contrast, TMEM16B immunoreactivity was present at E14.5 at the apical surface of the entire olfactory epithelium, increased in subsequent days, and localized to the cilia of mature olfactory sensory neurons. These data suggest different functional roles for TMEM16A and TMEM16B in the developing as well as in the postnatal olfactory epithelium. The presence of TMEM16A at the apical part and in microvilli of supporting cells is consistent with a role in the regulation of the chloride ionic composition of the mucus covering the apical surface of the olfactory epithelium, whereas the localization of TMEM16B to the cilia of mature olfactory sensory neurons is consistent with a role in olfactory signal transduction. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 657–675, 2014  相似文献   

17.

Background

MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis.

Methodology/Principal Findings

Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by real-time PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function.

Conclusions

This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA.  相似文献   

18.
Summary Luteinizing hormone (LH) binds to the Leydig cells of several mammalian species where it stimulates steroidogenesis, protein synthesis and protein phosphorylation. In the present study, standard immunoperoxidase (PAP) and avidin-biotin complex (ABC) techniques were used to detect the binding of endogenous and exogenous LH to the epididymis of the mature mouse. Throughout the epididymal duct, a positive reaction for peroxidase, indicating LH binding, occurred in the Golgi area of principal cells. In segment 1, positive reactions were also visualized in the perinuclear area and in the region located between the Golgi area and the apical surface of the principal cells (supra-Golgi area). In the corpus and cauda epididymidis, scattered entire principal cells were also positive. Throughout the epididymal duct, the reactions indicating the binding of exogenous LH were more intense than those of endogenous LH. The significance of LH binding to the epididymis is uncertain but LH may perform the same functions in epididymal principal cells as it does in Leydig cells.  相似文献   

19.
A Erko?ak 《Acta anatomica》1978,100(4):512-520
The ultrastructural modifications of the epithelial cells of rat corpus epididymis stimulated with gonadotropic hormone were studied. The structural variety of the cells depending on functional conditions becomes more prominent 6 h after the injection of gonadotropic hormone. Light large cells have one or often two nucleus-containing bing nucleoli, in their cytoplasm there are numerous vesicles, a well-developed Golgi apparatus, other organelles and lysosomal bodies. Some other cells are filled with many large vacuoles of different density, dense bodies and vesicles. Cells of another type which are in the majority show an unusually active structure reflecting the function of synthesis. The more prominent nucleolus is associated to clumps of chromatin. Their apical cytoplasm is filled by a structure related to absorption. The whole remaining part of their cytoplasm is covered with a very extensive Golgi apparatus and a very well developed granular endoplasmic reticulum. The extremely enlarged cisternae of this reticulum were found to be very closely applied to the basal cell membrane. There is a flocculent material inside the cisternae. Similar material is observed in the extracellular medium under the basal membrane. The epithelium seems normal 10 h after the injection of hormone, but large light cells make up the majority of them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号