首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eccentric exercise-induced muscle damage impairs muscle glycogen repletion   总被引:5,自引:0,他引:5  
Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.  相似文献   

2.
This study examined the time course of glycogen accumulation in skeletal muscle depleted by concentric work and subsequently subjected to eccentric exercise. Eight men exercised to exhaustion on a cycle ergometer [70% of maximal O2 consumption (VO2max)] and were placed on a carbohydrate-restricted diet. Approximately 12 h later they exercised one leg to subjective failure by repeated eccentric action of the knee extensors against a resistance equal to 120% of their one-repetition maximum concentric knee extension force (ECC leg). The contralateral leg was not exercised and served as a control (CON leg). During the 72-h recovery period, subjects consumed 7 g carbohydrate.kg body wt-1.day-1. Moderate soreness was experienced in the ECC leg 24-72 h after eccentric exercise. Muscle biopsies from the vastus lateralis of the ECC and CON legs revealed similar glycogen levels immediately after eccentric exercise (40.2 +/- 5.2 and 47.6 +/- 6.4 mmol/kg wet wt, respectively; P greater than 0.05). There was no difference in the glycogen content of ECC and CON legs after 6 h of recovery (77.7 +/- 7.9 and 85.1 +/- 4.9 mmol/kg wet wt, respectively; P greater than 0.05), but 18 h later, the ECC leg contained 15% less glycogen than the CON leg (90.2 +/- 8.2 vs. 105.8 +/- 8.9 mmol/kg wet wt; P less than 0.05). After 72 h of recovery, this difference had increased to 24% (115.8 +/- 8.0 vs. 153.0 +/- 12.2 mmol/kg wet wt; P less than 0.05). These data confirm that glycogen accumulation is impaired in eccentrically exercised muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of carbohydrate intake before and during exercise on muscle glycogen content was investigated. According to a randomized crossover study design, eight young healthy volunteers (n = 8) participated in two experimental sessions with an interval of 3 wk. In each session subjects performed 2 h of constant-load bicycle exercise ( approximately 75% maximal oxygen uptake). On one occasion (CHO), they received carbohydrates before ( approximately 150 g) and during (1 g.kg body weight(-1).h(-1)) exercise. On the other occasion they exercised after an overnight fast (F). Fiber type-specific relative glycogen content was determined by periodic acid Schiff staining combined with immunofluorescence in needle biopsies from the vastus lateralis muscle before and immediately after exercise. Preexercise glycogen content was higher in type IIa fibers [9.1 +/- 1 x 10(-2) optical density (OD)/microm(2)] than in type I fibers (8.0 +/- 1 x 10(-2) OD/microm(2); P < 0.0001). Type IIa fiber glycogen content decreased during F from 9.6 +/- 1 x 10(-2) OD/microm(2) to 4.5 +/- 1 x 10(-2) OD/microm(2) (P = 0.001), but it did not significantly change during CHO (P = 0.29). Conversely, in type I fibers during CHO and F the exercise bout decreased glycogen content to the same degree. We conclude that the combination of carbohydrate intake both before and during moderate- to high-intensity endurance exercise results in glycogen sparing in type IIa muscle fibers.  相似文献   

4.
Impaired muscle glycogen storage after muscle biopsy   总被引:2,自引:0,他引:2  
To assess the effects of repeated needle biopsies on the rate of muscle glycogen repletion, eight male subjects were studied immediately after and 2 days after an exhaustive cycling bout. A single biopsy was obtained from the right vastus lateralis muscle immediately after an exhaustive cycling bout. Two days later, a sample was taken 1 cm lateral or medial to sample A. In four of these subjects, additional biopsies were taken 3 cm distal and proximal. A control specimen was also taken from the left leg 2 days after the exercise. Ten days after the exercise, muscle was again sampled from each leg of these four subjects. Analysis of these samples revealed that the initial biopsy impaired glycogen storage in the muscle taken 1 cm medial or lateral to the previous site. This reduction in glycogen storage was most pronounced in the first 2 days after the exercise. Samples taken distal and proximal to the initial biopsy contained, on the average, less glycogen than the contralateral leg, but these differences were only significantly different in the distal muscle sample. Alteration in muscle glycogen storage was seen to persist for 10 days after the first biopsy, suggesting that care must be taken in selecting the site for repeated biopsies from the same muscle.  相似文献   

5.
6.
The aim of the present study was to investigate leucocyte markers, CD11b, CD16, CD66b, CD68, myeloperoxidase and neutrophil elastase on skeletal muscle biopsies from biceps brachii after unaccustomed eccentric exercise followed by the second bout of exercise 3 weeks later. The subjects (10 subjects received COX-2 inhibitor (Celecoxib) and 13 subjects received placebo) were divided into three categories: mild, moderate and severe effect of eccentric exercise, according to the reduction and recovery of muscle force-generating capacity after performing 70 maximal eccentric actions with elbow flexors on an isokinetic dynamometer. The results showed that the CD66b antibody was applicable for localization of neutrophils in human skeletal muscle, whereas the other studied neutrophil markers recognized also other leucocytes than neutrophils. The number of CD66b positive cells in skeletal muscle was very low and was not affected by the exercise. The macrophage marker CD68 showed reactivity also against satellite cells and fibroblast-like cells in skeletal muscle and therefore cannot be applied as a quantitative value for inflammatory cells. Skeletal muscle fibre injury, shown as dystrophin negative fibres, was observed approximately in half of the biopsies at 4 and 7 days after the first exercise bout in the categories moderate and severe effect of eccentric exercise. These subjects represent the most prominent loss in muscle force-generating capacity both at the category and the individual levels. Furthermore, deformed skeletal muscle fibres were observed in five subjects in these categories after the second bout of exercise. The present results suggest that neutrophils are not involved in skeletal muscle fibre injury and the reduction in muscle force-generating capacity after a single bout of eccentric exercise is a good indirect indicator of muscle damage in humans. Furthermore, prolonged regeneration process could be one of the reasons for impaired peripheral muscle function after high-force eccentric exercise.  相似文献   

7.
To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.  相似文献   

8.
To study the effect of downhill running on glycogen metabolism, 94 rats were exercised by running for 3 h on the level or down an 18 degrees incline. Muscle and liver glycogen concentrations were measured before exercise and 0, 48 and 52 h postexercise. Rats were not fed during the first 48 h of recovery but ingested a glucose solution 48 h postexercise. Downhill running depleted glycogen in the soleus muscle and liver significantly more than level running (P less than 0.01). The amount of glycogen resynthesized in the soleus muscle and liver in fasting or nonfasting rats was not altered significantly by downhill running (P greater than 0.05). On every day of recovery the rats were injected with dexamethasone, which induced similar increases in glycogen concentration in the soleus muscle and liver after the 52nd h of the postexercise period in the case of downhill and level running. The glycogen depletion and repletion results indicated that, under our experimental conditions, downhill running in the rat, a known model of eccentric exercise, affected muscle glycogen metabolism differently from eccentric cycling in humans.  相似文献   

9.
Impaired muscle glycogen resynthesis after eccentric exercise   总被引:2,自引:0,他引:2  
Eight men performed 10 sets of 10 eccentric contractions of the knee extensor muscles with one leg [eccentrically exercised leg (EL)]. The weight used for this exercise was 120% of the maximal extension strength. After 30 min of rest the subjects performed two-legged cycling [concentrically exercised leg (CL)] at 74% of maximal O2 uptake for 1 h. In the 3 days after this exercise four subjects consumed diets containing 4.25 g CHO/kg body wt, and the remainder were fed 8.5 g CHO/kg. All subjects experienced severe muscle soreness and edema in the quadriceps muscles of the eccentrically exercised leg. Mean (+/- SE) resting serum creatine kinase increased from a preexercise level of 57 +/- 3 to 6,988 +/- 1,913 U/l on the 3rd day of recovery. The glycogen content (mmol/kg dry wt) in the vastus lateralis of CL muscles averaged 90, 395, and 592 mmol/kg dry wt at 0, 24, and 72 h of recovery. The EL muscle, on the other hand, averaged 168, 329, and 435 mmol/kg dry wt at these same intervals. Subjects receiving 8.5 g CHO/kg stored significantly more glycogen than those who were fed 4.3 g CHO/kg. In both groups, however, significantly less glycogen was stored in the EL than in the CL.  相似文献   

10.
This study aimed to compare voluntary and stimulated exercise for changes in muscle strength, growth hormone (GH), blood lactate, and markers of muscle damage. Nine healthy men had two leg press exercise bouts separated by 2 wk. In the first bout, the quadriceps muscles were stimulated by biphasic rectangular pulses (75 Hz, duration 400 mus, on-off ratio 6.25-20 s) with current amplitude being consistently increased throughout 40 contractions at maximal tolerable level. In the second bout, 40 voluntary isometric contractions were performed at the same leg press force output as the first bout. Maximal voluntary isometric strength was measured before and after the bouts, and serum GH and blood lactate concentrations were measured before, during, and after exercise. Serum creatine kinase (CK) activity and muscle soreness were assessed before, immediately after, and 24, 48, and 72 h after exercise. Maximal voluntary strength decreased significantly (P < 0.05) after both bouts, but the magnitude of the decrease was significantly (P < 0.05) greater for the stimulated contractions (-22%) compared with the voluntary contractions (-9%). Increases in serum GH and lactate concentrations were significantly (P < 0.05) larger after the stimulation compared with the voluntary exercise. Increases in serum CK activity and muscle soreness were also significantly (P < 0.05) greater for the stimulation than voluntary exercise. It was concluded that a single bout of electrical stimulation exercise resulted in greater GH response and muscle damage than voluntary exercise.  相似文献   

11.
12.
The effects of a single series of high-force eccentric contractions involving the quadriceps muscle group (single leg) on plasma concentrations of muscle proteins were examined as a function of time, in the context of measurements of torque production and magnetic resonance imaging (MRI) of the involved muscle groups. Plasma concentrations of slow-twitch skeletal (cardiac beta-type) myosin heavy chain (MHC) fragments, myoglobin, creatine kinase (CK), and cardiac troponin T were measured in blood samples of six healthy male volunteers before and 2 h after 70 eccentric contractions of the quadriceps femoris muscle. Screenings were conducted 1, 2, 3, 6, 9, and 13 days later. To visualize muscle injury, MRI of the loaded and unloaded thighs was performed 3, 6, and 9 days after the eccentric exercise bout. Force generation of the knee extensors was monitored on a dynamometer (Cybex II+) parallel to blood sampling. Exercise resulted in a biphasic myoglobin release profile, delayed CK and MHC peaks. Increased MHC fragment concentrations of slow skeletal muscle myosin occurred in late samples of all participants, which indicated a degradation of slow skeletal muscle myosin. Because cardiac troponin T was within the normal range in all samples, which excluded a protein release from the heart (cardiac beta-type MHC), this finding provides evidence for an injury of slow-twitch skeletal muscle fibers in response to eccentric contractions. Muscle action revealed delayed reversible increases in MRI signal intensities on T2-weighted images of the loaded vastus intermedius and deep parts of the vastus lateralis. We attributed MRI signal changes due to edema in part to slow skeletal muscle fiber injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lack of staining for desmin in muscles in animal models of eccentric exercise has been suggested to reflect disruption of the desmin intermediate filament network and proposed to cause disruption of the myofibrillar apparatus and deterioration of muscle fibers. In a recent study, we examined muscle biopsies from persons who had performed different eccentric exercise protocols, which induced delayed onset muscle soreness (DOMS). We were unable to verify that loss of staining for desmin was a feature of sore muscles. Nevertheless, we observed changes in the desmin cytoskeleton, but the meaning of the observations was not conclusive. In the present study, a high resolution immunocytochemical method was used to investigate the changes of desmin and actin in human muscles following a bout of eccentric exercise that lead to DOMS 2-3 days post-exercise. Biopsies were taken before exercise and 1 h and 2-3 and 7-8 days after exercise. Phalloidin, a ligand that labels filamentous actin, and anti-desmin antibodies were used to stain semithin (approximately 0.5 micro m) cryosections. At 1 h post-exercise, the staining of actin and desmin did not differ from the controls, whereas in biopsies taken 2-3 and 7-8 days after exercise, 12.5% (SD 5.8%) and 6.1% (SD 2.3%) fibers showed areas of increased staining for actin. Corresponding values for fibers with increased staining for both actin and desmin were 8.7% (SD 3.9%) and 11.4% (SD 4.6%), respectively. We suggest that the increased staining of actin and desmin reflects an increased synthesis of these proteins as part of an adaptation process following the unaccustomed eccentric exercise.  相似文献   

14.
The primary purpose of this study was to determine whether gastric emptying limits the rate of muscle glycogen storage during the initial 4 h after exercise when a carbohydrate supplement is provided. A secondary purpose was to determine whether liquid (L) and solid (S) carbohydrate (CHO) feedings result in different rates of muscle glycogen storage after exercise. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. After each exercise bout they received 3 g CHO/kg body wt in L (50% glucose polymer) or S (rice/banana cake) form or by intravenous infusion (I; 20% sterile glucose). The L and S supplements were divided into two equal doses and administered immediately after and 120 min after exercise, whereas the I supplement was administered continuously during the first 235 min of the 240-min recovery period. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately after and 120 and 240 min after exercise. Blood glucose and insulin declined during exercise and increased significantly above preexercise levels during recovery in all treatments. The increase in blood glucose during the I treatment, however, was three times greater than during the L or S treatments. The average insulin response of the L treatment (61.7 +/- 4.9 microU/ml) was significantly greater than that of the S treatment (47.5 +/- 4.2 microU/ml) but not that of the I (55.3 +/- 4.5 microU/ml) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Male and female Wistar rats were run for 5 min at 1.7 mph at a 17% grade to determine whether a sex difference exists in the rate of glycogen resynthesis during recovery in fast-twitch red muscle, fast-twitch white muscle, and liver. Rats were killed at one of three time points: immediately after the exercise bout, and at 1 or 4 h later. Males had significantly higher resting muscle glycogen levels (P less than 0.05). Exercise resulted in significant glycogen depletion in both sexes (P less than 0.01). Males utilized approximately 50% more glycogen during the exercise bout than females (P less than 0.05). During the food-restricted 4-h recovery period, muscle glycogen was repleted significantly during the 1st h (P less than 0.05). Liver glycogen was not depleted as a result of the exercise bout, but fell during the first h of recovery (P less than 0.05) and remained low during the subsequent 3 h. The greater glycogen utilization in red and white fast-twitch muscle during exercise by males could represent a true sex difference but could also be attributable in part to the males having performed more work as a result of 20% greater body mass. We conclude that no sex difference was observed in the rates of muscle glycogen repletion after exercise or in liver glycogen metabolism during and after exercise, and rapid postexercise muscle glycogen repletion occurred at a time of accelerated liver glycogen depletion.  相似文献   

16.
Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4?% [2; 5] to 10?% [4; 16] (p?p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.  相似文献   

17.
18.
Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.  相似文献   

19.
This study examined the effect of contrast water therapy (CWT) on the physiological and functional symptoms of delayed onset muscle soreness (DOMS) following DOMS-inducing leg press exercise. Thirteen recreational athletes performed 2 experimental trials separated by 6 weeks in a randomized crossover design. On each occasion, subjects performed a DOMS-inducing leg press protocol consisting of 5 x 10 eccentric contractions (180 seconds recovery between sets) at 140% of 1 repetition maximum (1RM). This was followed by a 15-minute recovery period incorporating either CWT or no intervention, passive recovery (PAS). Creatine kinase concentration (CK), perceived pain, thigh volume, isometric squat strength, and weighted jump squat performance were measured prior to the eccentric exercise, immediately post recovery, and 24, 48, and 72 hours post recovery. Isometric force production was not reduced below baseline measures throughout the 72-hour data collection period following CWT ( approximately 4-10%). However, following PAS, isometric force production (mean +/- SD) was 14.8 +/- 11.4% below baseline immediately post recovery (p < 0.05), 20.8 +/- 15.6% 24 hours post recovery (p < 0.05), and 22.5 +/- 12.3% 48 hours post recovery (p < 0.05). Peak power produced during the jump squat was significantly reduced (p < 0.05) following both PAS (20.9 +/- 13.4%) and CWT (12.8 +/- 8.0%), with the mean reduction in power for PAS being marginally (not significantly) greater than for CWT (effect size = 0.76). Thigh volume measured immediately following CWT was significantly less than PAS. No significant differences in the changes in CK were found; in addition, there were no significant (p > 0.01) differences in perceived pain between treatments. Contrast water therapy was associated with a smaller reduction, and faster restoration, of strength and power measured by isometric force and jump squat production following DOMS-inducing leg press exercise when compared to PAS. Therefore, CWT seems to be effective in reducing and improving the recovery of functional deficiencies that result from DOMS, as opposed to passive recovery.  相似文献   

20.
This experiment examined the effect of eccentric contraction-induced muscle damage on the stretch-shortening cycle and vertical leg spring stiffness during jumping activities. Ten moderately active male and female adult volunteers participated in this study (aged 23 +/- 2.3 years). Temporary muscle damage to the knee extensors was administered by a bout of eccentric contractions on an isokinetic dynamometer. Measurements were obtained of maximum voluntary force and of take-off velocities for single-leg countermovement jumps (CMJs), squat jumps (SJs), and drop jumps (DJs), performed on a specially constructed sledge and force plate apparatus. These measurements were obtained before and after the damage intervention, and the undamaged leg was used as a control. The results indicated that eccentric muscle damage significantly affected stretch-shortening cycle performance by causing relatively greater reductions in SJ performance than CMJ or DJ. The muscle damage intervention also significantly increased leg-spring stiffness, which indicates that the changes in leg stiffness may be an important adaptation resulting from eccentric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号