首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of Cu(II) to the prion protein is investigated by computations at the B3LYP level of theory on models of the octarepeat domain of the prion protein. The models incorporate the functionality of the glycine (G) and histidine (H) residues which occur in the octarepeat domain, PHGGGWGQ. The copper complexes are designated Cu[HG] and Cu[HGGG]. Coordination to the metal via the imidazole ring of the histidine, the amide carbonyl groups, and the backbone nitrogen atom of the amide groups were examined, as well as several protonation/deprotonation states of each structure. EPR and CD titration experiments suggest that the octarepeat segments of the unstructured N-terminal domain of prion protein can bind Cu(II) in a 1:1 Cu-to-octarepeat ratio. The results identify the extent to which the Cu(II) facilitates peptide backbone deprotonation, and the propensity of binding in the forward (toward the C-terminus) direction from the anchoring histidine residue. A plausible mechanism is suggested for changing from amide O-atom to deprotonated amide N-atom coordination, and for assembly of the observed species in solutions of Cu[PrP] and truncated models of it. A structure is proposed which has the N2O2 coordination pattern for the minor component observed experimentally by EPR spectroscopy for the Cu[HGGG] model. The most stable neutral Cu[HGGG] structure found, with coordination environment N3O1, corresponds to that observed for Cu[HGGGW] and Cu[HGGG] both in the solid state and as the major component in solution at neutral pH.  相似文献   

2.
Bacterial ATP-binding cassette transport systems for high-affinity uptake of zinc and manganese use a cluster 9 solute-binding protein. Structures of four cluster 9 transport proteins have been determined previously. However, the structural determinants for discrimination between zinc and manganese remain under discussion. To further investigate the variability of metal binding sites in bacterial transporters, we have determined the structure of the zinc-bound transport protein ZnuA from Escherichia coli to 1.75 A resolution. The overall structure of ZnuA is similar to other solute-binding transporters. A scaffolding alpha-helix forms the backbone for two structurally related globular domains. The metal-binding site is located at the domain interface. The bound zinc ion is coordinated by three histidine residues (His78, His161 and His225) and one glutamate residue (Glu77). The functional role of Glu77 for metal binding is unexpected, because this residue is not conserved in previously determined structures of zinc and manganese-specific transport proteins. The observed metal coordination by four protein residues differs significantly from the zinc-binding site in the ZnuA transporter from Synechocystis 6803, which binds zinc via three histidine residues. In addition, the E. coli ZnuA structure reveals the presence of a disulfide bond in the C-terminal globular domain that is not present in previously determined cluster 9 transport protein structures.  相似文献   

3.
In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.  相似文献   

4.
5.
The vicinal oxygen chelate family of enzymes catalyzes a highly diverse set of chemistries that derives from one common mechanistic trait: bidentate coordination to a divalent metal center by a substrate or intermediate or transition state through vicinal oxygen atoms. The array of reactions catalyzed by this family is mediated structurally by a common fold and protein-chelating residues that secure and localize a metal ion. The common fold has topological symmetry being comprised of two βαβββ units that form an incompletely closed barrel of β-sheet about the metal ion. Interestingly, despite the diversity of the reactions catalyzed and the large number of metals observed to bind and promote the chemistry, this semi-symmetrical open barrel extends metal liganding side chains inward from a highly positionally conserved constellation of amino acid residues within the structure. Moreover, the core barrel fold arises from an array of possible intra/inter domain and subunit arrangements of the individual βαβββ units that are universally observed to stack side-by-side contacting along the first β-strand of each. While there are examples of enzymes that use this fold and do not bind a metal ion, this review is concerned with summarizing the key structural and mechanistic correlations that can be made for the metal-dependent vicinal oxygen chelate enzyme family members.  相似文献   

6.
A combined use of electrospray ionization-mass spectrometry (ESI-MS), 51V NMR spectroscopy and ab initio calculations has been proved to be a powerful tool for obtaining direct information of the structure and the chemistry of peroxo vanadates in solutions. The analysis of acid solutions containing monoperoxo vanadates showed the occurrence of exchange reactions between solvent molecules in the coordination sphere of the metal. On the other hand, bisperoxo vanadates appear to be less prone to coordinate more than one water or alcohol molecule. The bisperoxo complex [VO5]- in the presence of histidine and histidine-like ligands, at near neutral conditions, has been studied. Coordination of one and two molecules of ligand is observed affording [VO5L]- and [VO5L2]-, respectively. Characterization of these species has been obtained by MSn experiments, which allowed us to distinguish specific fragmentations of the peroxidic moiety.  相似文献   

7.
Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 A resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a beta-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the alpha-meso carbon position where O(2) is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.  相似文献   

8.
We describe herein the design, synthesis and coordination chemistry of a novel ligand motif that combines a bisoxazoline with a third flexible chelating substituent (“tail”). Four such ligands (6-9) were synthesized from phenylglycine in 4-5 steps each in ca. 20% overall yield. Coordination of 6 and 7 to [Re(CO)4Cl]2 yielded crystals suitable for X-ray analysis. Likewise, crystals were obtained from coordination of 6 to FeCl2. The solid state structures of the resulting complexes (10-12) reveal κ2 binding of the bisoxazoline motif; however, the structures of complexes 10 and 12 show that the “tail” is poised above the metal center, demonstrating the potential for alternate binding modes in solution. The complexes exhibit a relatively planar 6-membered chelate structure, in contrast to the boat conformation typical of trispyrazolylborate complexes.  相似文献   

9.
High-resolution crystal structures are reported for apo, holo, and substrate-bound forms of a toxoflavin-degrading metalloenzyme (TflA). In addition, the degradation reaction is shown to be dependent on oxygen, Mn(II), and dithiothreitol in vitro. Despite its low sequence identity with proteins of known structure, TflA is structurally homologous to proteins of the vicinal oxygen chelate superfamily. Like other metalloenzymes in this superfamily, the TflA fold contains four modules that associate to form a metal binding site; however, the fold displays a rare rearrangement of the structural modules indicative of domain permutation. Moreover, unlike the 2-His-1-carboxylate facial triad commonly utilized by vicinal oxygen chelate dioxygenases and other dioxygen-activating non-heme Fe(II) enzymes, the metal center in TflA consists of a 1-His-2-carboxylate facial triad. The substrate-bound complex shows square-pyramidal geometry in which one position is occupied by O5 of toxoflavin. The open coordination site is predicted to be the dioxygen binding site. TflA appears to stabilize the reduced form of toxoflavin through second-sphere interactions. This anionic species is predicted to be the electron source responsible for reductive activation of oxygen to produce a peroxytoxoflavin intermediate.  相似文献   

10.
11.
The C-terminal region of Escherichia coli SlyD is unstructured and extremely rich in potential metal-binding amino acids, especially in histidine residues. SlyD is able to bind two to seven nickel ions per molecule, in a variety of coordination geometries and coordination numbers. This protein contributes to the insertion of nickel into the hydrogenase precursor protein and it has a peptidyl-prolyl cis/trans-isomerase activity which can be regulated through nickel ions. This inspired us to undertake systematic studies on the coordination ability of two histidine-rich peptides from the C-terminus of the SlyD protein with nickel. Also, it is known that histidine-rich regions are part of a Cu2 + binding domain involved in copper uptake under conditions of metal starvation in vivo in other bacteria. For this reason we decided to examine the complex formation of Ac-AHGHVHGAHDHHHD-NH2 and Ac-GHGHDHGHEHG-NH2 fragments with copper ions, which are also reference metal ions in this study. Experiments were performed in a DMSO/water 30:70 solvent. The Ac-AHGHVHGAHDHHHD-NH2 and Ac-GHGHDHGHEHG-NH2 fragments were synthesized and their interactions with Ni2 + and Cu2 + ions were studied by potentiometric, mass spectrometric, UV-vis, CD, EPR, and NMR spectroscopic techniques in solution. The results show that the Ac-GHGHDHGHEHG-NH2 fragment forms equimolar complexes with both nickel and copper ions. At physiological pH, the metal ion is bound only through nitrogens from imidazole sidechain of histidine residues. On the contrary, Ac-AHGHVHGAHDHHHD-NH2 binds 2 metal ions per molecule, at pH range 5 to 7, even if the 1:2 metal:peptide ratios were used. NMR studies indicate the involvement of all His residues in this pH-range in metal binding of the latter peptide. At higher pH, the stoichiometry changes to 1:1 and the His residues are displaced by amide nitrogens.  相似文献   

12.
Recent findings unexpectedly revealed that human TLR4 can be directly activated by nickel ions. This activation is due to the coordination of nickel by a cluster of histidine residues on the ectodomain of human TLR4, which is absent in most other species. We aimed to elucidate the role of MD-2 in the molecular mechanism of TLR4/MD-2 activation by nickel, as nickel binding site on TLR4 is remote from MD-2, which directly binds the endotoxin as the main pathological activator of TLR4. We identified MD-2 and TLR4 mutants which abolished TLR4/MD-2 receptor activation by endotoxin but could nevertheless be significantly activated by nickel, which acts in synergy with LPS. Human TLR4/MD-2 was also activated by cobalt ions, while copper and cadmium were toxic in the tested concentration range. Activation of TLR4 by cobalt required MD-2 and was abolished by human TLR4 mutations of histidine residues at positions 456 and 458. We demonstrated that activation of TLR4 by nickel and cobalt ions can trigger both the MyD88-dependent and the –independent pathway. Based on our results we propose that predominantly hydrophobic interactions between MD-2 and TLR4 contribute to the stabilization of the TLR4/MD-2/metal ion complex in a conformation that enables activation.  相似文献   

13.
14.
Vps29 is the smallest subunit of retromer complex with metallo‐phosphatase fold. Although the role of metal in Vps29 is in quest, its metal binding mutants has been reported to affect the localization of the retromer complex in human cells. In this study, we report the structural and thermodynamic consequences of these mutations in Vps29 from the protozoan parasite, Entamoeba histolytica (EhVps29). EhVps29 is a zinc binding protein as revealed by X‐ray crystallography and isothermal titration calorimetry. The metal binding pocket of EhVps29 exhibits marked differences in its 3‐dimensional architecture and metal coordination in comparison to its human homologs and other metallo‐phosphatases. Alanine substitutions of the metal‐coordinating residues showed significant alteration in the binding affinity of EhVps29 for zinc. We also determined the crystal structures of metal binding defective mutants (D62A and D62A/H86A) of EhVps29. Based on our results, we propose that the metal atoms or the bound water molecules in the metal binding site are important for maintaining the structural integrity of the protein. Further cellular studies in the amoebic trophozoites showed that the overexpression of wild type EhVps29 leads to reduction in intracellular cysteine protease activity suggesting its crucial role in secretion of the proteases.  相似文献   

15.
Shin BK  Saxena S 《Biochemistry》2008,47(35):9117-9123
We provide direct evidence that all three histidine residues in amyloid-beta 1-16 (Abeta 1-16) coordinate to Cu(II). In our approach, we generate Abeta 1-16 analogues, in each of which a selected histidine residue is isotopically enriched with (15)N. Pulsed electron spin resonance (ESR) experiments such as electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectroscopy clearly show that all three histidine imidazole rings at positions 6, 13 and 14 in Abeta 1-16 bind to Cu(II). The method employed here does not require either chemical side chain modification or amino acid residue replacement, each of which is traditionally used to determine whether an amino acid residue in a protein binds to a metal ion. We find that the histidine coordination in the Abeta 1-16 peptide is independent of the Cu(II)-to-peptide ratio, which is in contrast to the Abeta 1-40 peptide. The ESR results also suggest tight binding between the histidine residues and the Cu(II) ion, which is likely the reason for the high binding affinity of the Abeta peptide for Cu(II).  相似文献   

16.
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.  相似文献   

17.
The structure of peptidase T, or tripeptidase, was determined by multiple wavelength anomalous dispersion (MAD) methodology and refined to 2.4 A resolution. Peptidase T comprises two domains; a catalytic domain with an active site containing two metal ions, and a smaller domain formed through a long insertion into the catalytic domain. The two metal ions, presumably zinc, are separated by 3.3 A, and are coordinated by five carboxylate and histidine ligands. The molecular surface of the active site is negatively charged. Peptidase T has the same basic fold as carboxypeptidase G2. When the structures of the two enzymes are superimposed, a number of homologous residues, not evident from the sequence alone, could be identified. Comparison of the active sites of peptidase T, carboxypeptidase G2, Aeromonas proteolytica aminopeptidase, carboxypeptidase A and leucine aminopeptidase reveals a common structural framework with interesting similarities and differences in the active sites and in the zinc coordination. A putative binding site for the C-terminal end of the tripeptide substrate was found at a peptidase T specific fingerprint sequence motif.  相似文献   

18.
Hpn-like (Hpnl) protein, encoded by the hpnl gene in Helicobacter pylori and featuring a histidine-rich and two glutamine-rich motifs, can render nickel tolerance to H. pylori when the external nickel level reaches toxic limits. We found that the recombinant Hpnl exists as an oligomer in the native state and binds to two molar equivalents of nickel ions per monomer with a dissociation constant of 3.8 μM. Nickel could be released from Hpnl either at acidic pH (pH1/2 4.6) or in the presence of chelate ligands, such as EDTA (t 1/2 = 220, 355, and 716 min at pH 6.0, 7.0, and 7.5, respectively). Our combined spectroscopic data show that nickel ion coordinates to a nitrogen of a histidine residue possibly with a coordination number of four (square-planar geometry) or five. The growth of Escherichia coli cells with or without the hpnl gene implied a protective role of Hpnl under higher concentrations of external nickel ions. Hpnl may serve a role in binding/storage or detoxification of excess nickel ions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Combining the concepts of synthetic symmetrization with the approach of engineering metal‐binding sites, we have developed a new crystallization methodology termed metal‐mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal‐mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction‐quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose‐binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures—eight for T4L and eight for MBP—displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization‐prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest.  相似文献   

20.
ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the cluster 9 group of ATP-binding cassette-type periplasmic Zn- and Mn-binding proteins. In Gram-negative bacteria, the ZnuABC system is essential for zinc uptake and homeostasis and is an important determinant of bacterial resistance to the host defense mechanisms. The cluster 9 members share a two (α/β)4 domain architecture with a long α-helix connecting the two domains. In the Zn-specific proteins, the so-called α3c and the α4 helices are separated by an insert of variable length, rich in histidine and negatively charged residues. This distinctive His-rich loop is proposed to play a role in the management of zinc also due to its location at the entrance of the metal binding site located at the domain interface. The known Synechocystis 6803 and Escherichia coli ZnuA structures show the same metal coordination involving three conserved histidines and a glutamic acid or a water molecule as fourth ligand. The structures of Salmonella enterica ZnuA, with a partially or fully occupied zinc binding site, and of a deletion mutant missing a large part of the His-rich loop revealed unexpected differences in the metal-coordinating ligands, as histidine 140 from the mobile (at the C-terminal) part of the loop substitutes the conserved histidine 60. This unforeseen coordination is rendered possible by the “open conformation” of the two domains. The possible structural determinants of these peculiarities and their functional relevance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号