首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuraminidase (NA) mutations conferring resistance to NA inhibitors (NAIs) generally compromise the fitness of influenza viruses. The only NAI-resistant virus that widely spread in the population, the A/Brisbane/59/2007 (H1N1) strain, contained permissive mutations that restored the detrimental effect caused by the H275Y change. Computational analysis predicted other permissive NA mutations for A(H1N1)pdm09 viruses. Here, we investigated the effect of T289M and N369K mutations on the viral fitness of the A(H1N1)pdm09 H275Y variant. Recombinant wild-type (WT) A(H1N1)pdm09 and the H275Y, H275Y/T289M, H275Y/N369K, and H275Y/V241I/N369K (a natural variant) NA mutants were generated by reverse genetics. Replication kinetics were performed by using ST6GalI-MDCK cells. Virulence was assessed in C57BL/6 mice, and contact transmission was evaluated in ferrets. The H275Y mutation significantly reduced viral titers during the first 12 to 36 h postinfection (p.i.) in vitro. Nevertheless, the WT and H275Y viruses induced comparable mortality rates, weight loss, and lung titers in mice. The T289M mutation eliminated the detrimental effect caused by the H275Y change in vitro while causing greater weight loss and mortality in mice, with significantly higher lung viral titers on days 3 and 6 p.i. than with the H275Y mutant. In index ferrets, the WT, H275Y, H275Y/T289M, and H275Y/V241I/N369K recombinants induced comparable fever, weight loss, and nasal wash viral titers. All tested viruses were transmitted at comparable rates in contact ferrets, with the H275Y/V241I/N369K recombinant demonstrating higher nasal wash viral titers than the H275Y mutant. Permissive mutations may enhance the fitness of A(H1N1)pdm09 H275Y viruses in vitro and in vivo. The emergence of such variants should be carefully monitored.  相似文献   

2.
Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, KM values for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (KI) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodated in the I223R mutant structure in a similar way to wild type, thus explaining the kinetic data. Our structural data also show that, in contrast to a recently reported structure, the active site of 2009 pandemic neuraminidase can adopt an open conformation.  相似文献   

3.
Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased Km for 3′-sialylactose or 6′-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04NA-H275Y and RG-CA04 × BrisbaneNA-H275Y viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCalHA,NA, RG-NewCalHA,NA-H275Y, RG-BrisbaneHA,NA-H275Y, and RG-NewCalHA × BrisbaneNA-H275Y viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.  相似文献   

4.
Compensatory mutations contribute to the appearance of the oseltamivir resistance substitution H274Y in the neuraminidase (NA) gene of H1N1 influenza viruses. Here, we describe a high-throughput screening method utilizing error-prone PCR and next-generation sequencing to comprehensively screen NA genes for H274Y compensatory mutations. We found four mutations that can either fully (R194G, E214D) or partially (L250P, F239Y) compensate for the fitness deficiency of the H274Y mutant. The compensatory effect of E214D is applicable in both seasonal influenza virus strain A/New Caledonia/20/1999 and 2009 pandemic swine influenza virus strain A/California/04/2009. The technique described here has the potential to profile a gene at the single-nucleotide level to comprehend the dynamics of mutation space and fitness and thus offers prediction power for emerging mutant species.  相似文献   

5.
6.

Background

Resistance of pandemic A(H1N1)2009 (H1N1pdm09) virus to neuraminidase inhibitors (NAIs) has remained limited. A new mutation I223R in the neuraminidase (NA) of H1N1pdm09 virus has been reported along with H275Y in immunocompromised patients. The aim of this study was to determine the impact of I223R on oseltamivir and zanamivir susceptibility.

Methods

The NA enzymatic characteristics and susceptibility to NAIs of viruses harbouring the mutations I223R and H275Y alone or in combination were analyzed on viruses produced by reverse genetics and on clinical isolates collected from an immunocompromised patient with sustained influenza H1N1pdm09 virus shedding and treated by oseltamivir (days 0–15) and zanamivir (days 15–25 and 70–80).

Results

Compared with the wild type, the NA of recombinant viruses and clinical isolates with H275Y or I223R mutations had about two-fold reduced affinity for the substrate. The H275Y and I223R isolates showed decreased susceptibility to oseltamivir (246-fold) and oseltamivir and zanamivir (8.9- and 4.9-fold), respectively. Reverse genetics assays confirmed these results and further showed that the double mutation H275Y and I223R conferred enhanced levels of resistance to oseltamivir and zanamivir (6195- and 15.2-fold). In the patient, six days after initiation of oseltamivir therapy, the mutation H275Y conferring oseltamivir resistance and the I223R mutation were detected in the NA. Mutations were detected concomitantly from day 6–69 but molecular cloning did not show any variant harbouring both mutations. Despite cessation of NAI treatment, the mutation I223R persisted along with additional mutations in the NA and the hemagglutinin.

Conclusions

Reduced susceptibility to both oseltamivir and zanamivir was conferred by the I223R mutation which potentiated resistance to both NAIs when associated with the H275Y mutation in the NA. Concomitant emergence of the I223R and H275Y mutations under oseltamivir treatment underlines the importance of close monitoring of treated patients especially those immunocompromised.  相似文献   

7.
The H275Y amino acid substitution of the neuraminidase gene is the most common mutation conferring oseltamivir resistance in the N1 subtype of the influenza virus. Using a mathematical model to analyze a set of in vitro experiments that allow for the full characterization of the viral replication cycle, we show that the primary effects of the H275Y substitution on the pandemic H1N1 (H1N1pdm09) strain are to lengthen the mean eclipse phase of infected cells (from 6.6 to 9.1 h) and decrease (by 7-fold) the viral burst size, i.e., the total number of virions produced per cell. We also find, however, that the infectious-unit-to-particle ratio of the H275Y mutant strain is 12-fold higher than that of the oseltamivir-susceptible strain (0.19 versus 0.016 per RNA copy). A parallel analysis of the H275Y mutation in the prior seasonal A/Brisbane/59/2007 background shows similar changes in the infection kinetic parameters, but in this background, the H275Y mutation also allows the mutant to infect cells five times more rapidly. Competitive mixed-strain infections in vitro, where the susceptible and resistant H1N1pdm09 strains must compete for cells, are characterized by higher viral production by the susceptible strain but suggest equivalent fractions of infected cells in the culture. In ferrets, however, the mutant strain appears to suffer a delay in its infection of the respiratory tract that allows the susceptible strain to dominate mixed-strain infections.  相似文献   

8.
9.
Pandemic 2009 H1N1 (pH1N1) influenza viruses caused mild symptoms in most infected patients. However, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. Here we tested whether influenza strains displaying differential virulence could be present among circulating pH1N1 viruses. The biological properties and the genotype of viruses isolated from a patient showing mild disease (M) or from a fatal case (F), both without known co-morbid conditions were compared in vitro and in vivo. The F virus presented faster growth kinetics and stronger induction of cytokines than M virus in human alveolar lung epithelial cells. In the murine model in vivo, the F virus showed a stronger morbidity and mortality than M virus. Remarkably, a higher proportion of mice presenting infectious virus in the hearts, was found in F virus-infected animals. Altogether, the data indicate that strains of pH1N1 virus with enhanced pathogenicity circulated during the 2009 pandemic. In addition, examination of chemokine receptor 5 (CCR5) genotype, recently reported as involved in severe influenza virus disease, revealed that the F virus-infected patient was homozygous for the deleted form of CCR5 receptor (CCR5Δ32).  相似文献   

10.
The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. Molecular evolutionary analyses of the 2009 pandemic influenza A H1N1 [A(H1N1)pdm09] virus revealed two major clusters, cluster I and cluster II. Although the pathogenicity of viruses belonging to cluster I, which became extinct by the end of 2009, has been examined in a nonhuman primate model, the pathogenic potential of viruses belonging to cluster II, which has spread more widely in the world, has not been studied in this animal model. Here, we characterized two Norwegian isolates belonging to cluster II, namely, A/Norway/3568/2009 (Norway3568) and A/Norway/3487-2/2009 (Norway3487), which caused distinct clinical symptoms, despite their genetic similarity. We observed more efficient replication in cultured cells and delayed virus clearance from ferret respiratory organs for Norway3487 virus, which was isolated from a severe case, compared with the efficiency of replication and time of clearance of Norway3568 virus, which was isolated from a mild case. Moreover, Norway3487 virus to some extent caused more severe lung damage in nonhuman primates than did Norway3568 virus. Our data suggest that the distinct replicative and pathogenic potentials of these two viruses may result from differences in their biological properties (e.g., the receptor-binding specificity of hemagglutinin and viral polymerase activity).  相似文献   

11.
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.  相似文献   

12.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

13.
14.

Background

The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines.

Methodology/Principal Findings

We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses, high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.

Conclusion/Significance

This study demonstrates that VLP vaccination provides highly effective protection against the 2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be rapidly produced and avoid the need to isolate high growth reassortants for egg-based production.  相似文献   

15.

Background

2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States.

Methods

We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites.

Results

The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years.

Conclusions

By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children.  相似文献   

16.
Seasonal and pandemic strains of influenza have widespread implications for the global economy and global health. This has been highlighted recently as the epidemiologic characteristics for hospitalization and mortality for pandemic influenza H1N1 2009 are now emerging. While treatment with neuraminidase inhibitors are effective for seasonal and pandemic influenza, prevention of morbidity and mortality through effective vaccines requires a rigorous process of research and development. Vulnerable populations such as older adults (i.e., > age 65 years) suffer the greatest impact from seasonal influenza yet do not have a consistent seroprotective response to seasonal influenza vaccines due to a combination of factors. This short narrative review will highlight the emerging epidemiologic characteristics of pandemic H1N1 2009 and focus on immunosenescence, innate immune system responses to influenza virus infection and vaccination, and influenza vaccine responsiveness as it relates to seasonal and H1N1 pandemic influenza vaccines.  相似文献   

17.
To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.  相似文献   

18.
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population.  相似文献   

19.
20.
The fitness effects of synonymous mutations can provide insights into biological and evolutionary mechanisms. We analyzed the experimental fitness effects of all single-nucleotide mutations, including synonymous substitutions, at the beginning of the influenza A virus hemagglutinin (HA) gene. Many synonymous substitutions were deleterious both in bulk competition and for individually isolated clones. Investigating protein and RNA levels of a subset of individually expressed HA variants revealed that multiple biochemical properties contribute to the observed experimental fitness effects. Our results indicate that a structural element in the HA segment viral RNA may influence fitness. Examination of naturally evolved sequences in human hosts indicates a preference for the unfolded state of this structural element compared to that found in swine hosts. Our overall results reveal that synonymous mutations may have greater fitness consequences than indicated by simple models of sequence conservation, and we discuss the implications of this finding for commonly used evolutionary tests and analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号