首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We predict the virtual trajectories and stiffness ellipses during multijoint arm movements by computer simulations. A two-link manipulator with four single-joint muscles and two double-joint muscles is used as a model of the human arm. Physical parameters of the model are derived from several experimental data. Among them, special emphasis is put on low values of the dynamic hand stiffness recently measured during single joint and multijoint movements. The feedback-error-learning scheme to acquire the inverse dynamics model and the inverse statics model is utilized for this prediction. The virtual trajectories are much more complex than the actual trajectories. This indicates that planning the virtual trajectory is as difficult as solving the inverse dynamics problem for medium and fast movements, and simply falsifies the advocated computational advantage of the virtual trajectory control hypothesis. Thus, we conclude that learning inverse models is essential even in the virtual trajectory control framework. Finally, we propose a new computational model to learn the complicated shape of the virtual trajectories by integrating the virtual trajectory control and the feedback-error-learning scheme.  相似文献   

2.
 We propose a trajectory planning and control theory which provides explanations at the computation, algorithm, representation, and hardware levels for continuous movement such as connected cursive handwriting. The hardware is based on our previously proposed forward-inverse-relaxation neural network. Computationally, the optimization principle is the minimum torque-change criterion. At the representation level, hard constraints satisfied by a trajectory are represented as a set of via-points extracted from handwritten characters. Accordingly, we propose a via-point estimation algorithm that estimates via-points by repeating trajectory formation of a character and via-point extraction from the character. It is shown experimentally that for movements with a single via-point target, the via-point estimation algorithm can assign a point near the actual via-point target. Good quantitative agreement is found between human movement data and the trajectories generated by the proposed model. Received: 23 June 1994 / Accepted in revised form: 3 February 1995  相似文献   

3.
Positioning empty containers is one of the most effective ways to solve the container imbalance problem and is affected by the capacity of depots. A shipping company will be more competitive if the depot capacity is large. This study provides a decision tool for planning the expansion of depot capacity. Mathematical models are utilized to minimize the total relevant costs that include the capacity expansion cost, storage space leasing cost, inventory holding cost, container leasing cost, and positioning cost. The problem is formulated as a mixed integer program. Then, we develop a heuristic algorithm that is based on Lagrangian relaxation. Computational experiments are conducted to evaluate the performance of the proposed algorithm.  相似文献   

4.
 There is a no unique relationship between the trajectory of the hand, represented in cartesian or extrinsic space, and its trajectory in joint angle or intrinsic space in the general condition of joint redundancy. The goal of this work is to analyze the relation between planning the trajectory of a multijoint movement in these two coordinate systems. We show that the cartesian trajectory can be planned based on the task parameters (target coordinates, etc.) prior to and independently of angular trajectories. Angular time profiles are calculated from the cartesian trajectory to serve as a basis for muscle control commands. A unified differential equation that allows planning trajectories in cartesian and angular spaces simultaneously is proposed. Due to joint redundancy, each cartesian trajectory corresponds to a family of angular trajectories which can account for the substantial variability of the latter. A set of strategies for multijoint motor control following from this model is considered; one of them coincides with the frog wiping reflex model and resolves the kinematic inverse problem without inversion. The model trajectories exhibit certain properties observed in human multijoint reaching movements such as movement equifinality, straight end-point paths, bell-shaped tangential velocity profiles, speed-sensitive and speed-insensitive movement strategies, peculiarities of the response to double-step targets, and variations of angular trajectory without variations of the limb end-point trajectory in cartesian space. In humans, those properties are almost independent of limb configuration, target location, movement duration, and load. In the model, these properties are invariant to an affine transform of cartesian space. This implies that these properties are not a special goal of the motor control system but emerge from movement kinematics that reflect limb geometry, dynamics, and elementary principles of motor control used in planning. All the results are given analytically and, in order to compare the model with experimental results, by computer simulations. Received: 6 April 1994/Accepted in revised form: 25 April 1995  相似文献   

5.
Efficiently computing the Robinson-Foulds metric.   总被引:1,自引:0,他引:1  
The Robinson-Foulds (RF) metric is the measure most widely used in comparing phylogenetic trees; it can be computed in linear time using Day's algorithm. When faced with the need to compare large numbers of large trees, however, even linear time becomes prohibitive. We present a randomized approximation scheme that provides, in sublinear time and with high probability, a (1 + epsilon) approximation of the true RF metric. Our approach is to use a sublinear-space embedding of the trees, combined with an application of the Johnson-Lindenstrauss lemma to approximate vector norms very rapidly. We complement our algorithm by presenting an efficient embedding procedure, thereby resolving an open issue from the preliminary version of this paper. We have also improved the performance of Day's (exact) algorithm in practice by using techniques discovered while implementing our approximation scheme. Indeed, we give a unified framework for edge-based tree algorithms in which implementation tradeoffs are clear. Finally, we present detailed experimental results illustrating the precision and running-time tradeoffs as well as demonstrating the speed of our approach. Our new implementation, FastRF, is available as an open-source tool for phylogenetic analysis.  相似文献   

6.
This paper describes an automatic algorithm that uses a geometry-driven optimization approach to restore the shape of three-dimensional (3D) left ventricular (LV) models created from magnetic resonance imaging (MRI) data. The basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration and that the general shape characteristic of the LV is not altered. The Maximum Principle Curvature () and the Minimum Principle Curvature () of the LV epicardial surface are used to construct a shape-based optimization objective function to restore the shape of a motion-affected LV via a dual-resolution semi-rigid deformation process and a free-form geometric deformation process. A limited memory quasi-Newton algorithm, L-BFGS-B, is then used to solve the optimization problem. The goal of the optimization is to achieve a smooth epicardial shape by iterative in-plane and through-plane translation of vertices in the LV model. We tested our algorithm on 30 sets of LV models with simulated motion artifact generated from a very smooth patient sample, and 20 in vivo patient-specific models which contain significant motion artifacts. In the 30 simulated samples, the Hausdorff distances with respect to the Ground Truth are significantly reduced after restoration, signifying that the algorithm can restore geometrical accuracy of motion-affected LV models. In the 20 in vivo patient-specific models, the results show that our method is able to restore the shape of LV models without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.  相似文献   

7.
A model of handwriting   总被引:1,自引:1,他引:0  
The research reported here is concerned with hand trajectory planning for the class of movements involved in handwriting. Previous studies show that the kinematics of human two-joint arm movements in the horizontal plane can be described by a model which is based on dynamic minimization of the square of the third derivative of hand position (jerk), integrated over the entire movement. We extend this approach to both the analysis and the synthesis of the trajectories occurring in the generation of handwritten characters. Several basic strokes are identified and possible stroke concatenation rules are suggested. Given a concise symbolic representation of a stroke shape, a simple algorithm computes the complete kinematic specification of the corresponding trajectory. A handwriting generation model based on a kinematics from shape principle and on dynamic optimization is formulated and tested. Good qualitative and quantitative agreement was found between subject recordings and trajectories generated by the model. The simple symbolic representation of hand motion suggested here may permit the central nervous system to learn, store and modify motor action plans for writing in an efficient manner.  相似文献   

8.
Genomic mapping by anchoring random clones: a mathematical analysis.   总被引:12,自引:0,他引:12  
A complete physical map of the DNA of an organism, consisting of overlapping clones spanning the genome, is an extremely useful tool for genomic analysis. Various methods for the construction of such physical maps are available. One approach is to assemble the physical map by "fingerprinting" a large number of random clones and inferring overlap between clones with sufficiently similar fingerprints. E.S. Lander and M.S. Waterman (1988, Genomics 2:231-239) have recently provided a mathematical analysis of such physical mapping schemes, useful for planning such a project. Another approach is to assemble the physical map by "anchoring" a large number of random clones--that is, by taking random short regions called anchors and identifying the clones containing each anchor. Here, we provide a mathematical analysis of such a physical mapping scheme.  相似文献   

9.
Biological trajectories can be characterized by transient patterns that may provide insight into the interactions of the moving object with its immediate environment. The accurate and automated identification of trajectory motifs is important for the understanding of the underlying mechanisms. In this work, we develop a novel trajectory segmentation algorithm based on supervised support vector classification. The algorithm is validated on synthetic data and applied to the identification of trajectory fingerprints of fluorescently tagged human adenovirus particles in live cells. In virus trajectories on the cell surface, periods of confined motion, slow drift, and fast drift are efficiently detected. Additionally, directed motion is found for viruses in the cytoplasm. The algorithm enables the linking of microscopic observations to molecular phenomena that are critical in many biological processes, including infectious pathogen entry and signal transduction.  相似文献   

10.
A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely.  相似文献   

11.
The problem of scheduling jobs using wearing tools is studied. Tool wearing is assumed to be stochastic and the jobs are processed in one machining centre provided with a limited capacity tool magazine. The aim is to minimize the expected average completion time of the jobs by choosing their processing order and tool management decisions wisely. All jobs are available at the beginning of the planning period. This kind of situation is met in production planning of CNC-machines. Previous studies concerning this problem have either assumed deterministic wearing for the tools or omitted the wearing completely. In our formulation of the problem, tool wearing is stochastic and the problem becomes very hard to solve analytically. A heuristic based on genetic algorithms is therefore given for the joint problem of job scheduling and tool management. The algorithm searches the most beneficial job sequence when the tool management decisions are made by a removal rule taking into account the future planned usage of the tools. The cost of each job sequence is evaluated by simulating the job processing. Empirical tests with heuristics indicate that by taking the stochastic information into account, one can reduce the average job processing time considerably.  相似文献   

12.
PurposeThe main focus of the current paper is the clinical implementation of a Monte Carlo based platform for treatment plan validation for Tomotherapy and Cyberknife, without adding additional tasks to the dosimetry department.MethodsThe Monte Carlo platform consists of C++ classes for the actual functionality and a web based GUI that allows accessing the system using a web browser. Calculations are based on BEAMnrc/DOSXYZnrc and/or GATE and are performed automatically after exporting the dicom data from the treatment planning system. For Cyberknife treatments of moving targets, the log files saved during the treatment (position of robot, internal fiducials and external markers) can be used in combination with the 4D planning CT to reconstruct the actually delivered dose. The Monte Carlo platform is also used for calculation on MRI images, using pseudo-CT conversion.ResultsFor Tomotherapy treatments we obtain an excellent agreement (within 2%) for almost all cases. However, we have been able to detect a problem regarding the CT Hounsfield units definition of the Toshiba Large Bore CT when using a large reconstruction diameter. For Cyberknife treatments we obtain an excellent agreement with the Monte Carlo algorithm of the treatment planning system. For some extreme cases, when treating small lung lesions in low density lung tissue, small differences are obtained due to the different cut-off energy of the secondary electrons.ConclusionsA Monte Carlo based treatment plan validation tool has successfully been implemented in clinical routine and is used to systematically validate all Cyberknife and Tomotherapy plans.  相似文献   

13.
Most quadruped reptiles,such as lizards,salamanders and crocodiles,swing their waists while climbing on horizontal or vertical surfaces.Accompanied by body movement,the centroid trajectory also becomes more of a zigzag path rather than a straight line.Inspired by gecko's gait and posture on a vertical surface,a gecko inspired model with one pendular waist and four active axil legs,which is called GPL model,is proposed.Relationship between the waist position,dynamic gait,and driving forces on supporting feet is analyzed.As for waist trajectory planning,a singular line between the supporting feet is found and its effects on driving forces are discussed.Based on the GPL model,it is found that a sinusoidal waist trajectory,rather than a straight line,makes the driving forces on the supporting legs smaller.Also,a waist close to the pygal can reduce the driving forces compared to the one near middle vertebration,which is in accord with gecko's body bending in the process of climbing.The principles of configuration design and gait planning are proposed based on theoretical analyses.Finally,a bio-inspired robot DracoBot is developed and both of the driving force measurements and climbing experiments reinforce theoretical analysis and the rationality of gecko's dynamic gait.  相似文献   

14.
Formation and control of optimal trajectory in human multijoint arm movement   总被引:16,自引:2,他引:14  
In this paper, we study trajectory planning and control in voluntary, human arm movements. When a hand is moved to a target, the central nervous system must select one specific trajectory among an infinite number of possible trajectories that lead to the target position. First, we discuss what criterion is adopted for trajectory determination. Several researchers measured the hand trajectories of skilled movements and found common invariant features. For example, when moving the hand between a pair of targets, subjects tended to generate roughly straight hand paths with bell-shaped speed profiles. On the basis of these observations and dynamic optimization theory, we propose a mathematical model which accounts for formation of hand trajectories. This model is formulated by defining an objective function, a measure of performance for any possible movement: square of the rate of change of torque integrated over the entire movement. That is, the objective function CT is defined as follows: (formula; see text) We overcome this difficult by developing an iterative scheme, with which the optimal trajectory and the associated motor command are simultaneously computed. To evaluate our model, human hand trajectories were experimentally measured under various behavioral situations. These results supported the idea that the human hand trajectory is planned and controlled in accordance with the minimum torque-change criterion.  相似文献   

15.
PurposeTriple channel algorithm and specific procedures make more reliable radiochromic dosimetry for treatment planning verification and quality assurance in radiation therapy. A tool to obtain radiochromic dose distributions and compare them with the ones resulting from a treatment planning system was developed and applied.MethodsThe tool was developed as Microsoft Excel macro; it builds dose calibration curves against net optical density of Gafchromic EBT3 film, produces axial, coronal and sagittal dose maps and allows to evaluate them against dose distributions calculated by the Varian treatment planning system Eclipse using gamma index and gamma angle.ResultsThe net optical density standard errors of estimate of calibration curves at 6 MV Varian DBX600 linac energy were 0.2%, 0.4% and 0.2% for the red, green and blue channels. Tests of these curves by means of three independent eight dose points measurement series, at 15 MV and 6 MV Varian 2100C linac and at 6 MV DBX600 linac energies, showed less than 2% of dose errors for the red channel and less than 3% for the green channel in the range 100–450 cGy. The comparisons between dose distributions from Gafchromic EBT3 triple channel algorithm and the ones from Eclipse analytic anisotropic algorithm (AAA) showed values of gamma index 95th percentile between 0.6 and 1.0.ConclusionThe obtained results encourage the application of this tool in radiation therapy quality assurance.  相似文献   

16.
The aim of this work is to develop a remotely controlled manipulator to perform minimally invasive diagnostic and therapeutic interventions in the abdominal and thoracic cavities, with real-time magnetic resonance imaging (MRI) guidance inside clinical cylindrical MR scanners. The manipulator is composed of a three degree of freedom Cartesian motion system, which resides outside the gantry of the scanner, and serves as the holder and global positioner of a three degree of freedom arm which extends inside the gantry of the scanner At its distal end, the arm's end-effector can carry an interventional tool such as a biopsy needle, which can be advanced to a desired depth by means of a seventh degree of freedom. These seven degrees of freedom, provided by the entire assembly, offer extended manipulability to the device and a wide envelope of operation to the user, who can select a trajectory suitable for the procedure. The device is constructed of nonmagnetic and nonconductive fiberglass, and carbon fiber composite materials, to minimize artifacts and distortion on the MR images as well as eliminate effects on its operation from the high magnetic field and the fast switching magnetic field gradients used in MR imaging. A user interface was developed for man-in-the-loop control of the device using real-time MR images. The user interface fuses all sensor signals (MR and manipulator information) in a visualization, planning, and control command environment. Path planning is performed with graphical tools for setting the trajectory of insertion of the interventional tool using multislice and/or three dimensional MR images which are refreshed in real time. The device control is performed with an embedded computer which runs real-time control software. The manipulator compatibility with the MR environment and image-guided operation was tested on a 1.5 T MR scanner.  相似文献   

17.
The speedy development and extensive application of computers have helped play a significant role in a new technological revolution. The importance of FMS flexibility in producing a variety of products and adapting rapidly to customer requirements makes FMSs attractive. Further, FMSs are most appropriate for largevariety and medium- to high-volume production environments. However, the module of the FMS production planning system is not perfect. This paper focuses on a new scheme for FMS production planning and dispatching under the realistic assumptions promoted by a particular flexible manufacturing factory. Some practical constraints such as fixture uniqueness, limited tool magazine capacity, and a given number of pallets are considered. The simulation results indicate that the scheme provides a good production plan, according to the short-term plans from the MIS Department. Some conclusions are drawn and a discussion is presented.  相似文献   

18.
19.
Motor learning in the context of arm reaching movements has been frequently investigated using the paradigm of force-field learning. It has been recently shown that changes to somatosensory perception are likewise associated with motor learning. Changes in perceptual function may be the reason that when the perturbation is removed following motor learning, the hand trajectory does not return to a straight line path even after several dozen trials. To explain the computational mechanisms that produce these characteristics, we propose a motor control and learning scheme using a simplified two-link system in the horizontal plane: We represent learning as the adjustment of desired joint-angular trajectories so as to achieve the reference trajectory of the hand. The convergence of the actual hand movement to the reference trajectory is proved by using a Lyapunov-like lemma, and the result is confirmed using computer simulations. The model assumes that changes in the desired hand trajectory influence the perception of hand position and this in turn affects movement control. Our computer simulations support the idea that perceptual change may come as a result of adjustments to movement planning with motor learning.  相似文献   

20.
An improved algorithm for clustering gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Recent advancements in microarray technology allows simultaneous monitoring of the expression levels of a large number of genes over different time points. Clustering is an important tool for analyzing such microarray data, typical properties of which are its inherent uncertainty, noise and imprecision. In this article, a two-stage clustering algorithm, which employs a recently proposed variable string length genetic scheme and a multiobjective genetic clustering algorithm, is proposed. It is based on the novel concept of points having significant membership to multiple classes. An iterated version of the well-known Fuzzy C-Means is also utilized for clustering. RESULTS: The significant superiority of the proposed two-stage clustering algorithm as compared to the average linkage method, Self Organizing Map (SOM) and a recently developed weighted Chinese restaurant-based clustering method (CRC), widely used methods for clustering gene expression data, is established on a variety of artificial and publicly available real life data sets. The biological relevance of the clustering solutions are also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号