首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Japanese encephalitis (JE) virus infection can cause severe disease in humans, resulting in death or permanent neurologic deficits among survivors. Studies indicate that the incidence of JE is high in northwestern Bangladesh. Pigs are amplifying hosts for JE virus (JEV) and a potentially important source of virus in the environment. The objectives of this study were to describe the transmission dynamics of JEV among pigs in northwestern Bangladesh and estimate the potential impact of vaccination to reduce incidence among pigs.

Methodology/Principal Findings

We conducted a comprehensive census of pigs in three JE endemic districts and tested a sample of them for evidence of previous JEV infection. We built a compartmental model to describe JEV transmission dynamics in this region and to estimate the potential impact of pig vaccination. We identified 11,364 pigs in the study area. Previous JEV infection was identified in 30% of pigs with no spatial differences in the proportion of pigs that were seropositive across the study area. We estimated that JEV infects 20% of susceptible pigs each year and the basic reproductive number among pigs was 1.2. The model suggest that vaccinating 50% of pigs each year resulted in an estimated 82% reduction in annual incidence in pigs.

Conclusions/Significance

The widespread distribution of historic JEV infection in pigs suggests they may play an important role in virus transmission in this area. Future studies are required to understand the contribution of pig infections to JE risk in humans and the potential impact of pig vaccination on human disease.  相似文献   

2.
Japanese encephalitis (JE) is a vector-borne zoonosis and the leading cause of human viral encephalitis in Asia. Its transmission cycle is usually described as involving wild birds as reservoirs and pigs as amplifying hosts. JE is endemic in Cambodia, where it circulates in areas with low pig densities (<70 pigs per km2), and could be maintained in a multi-host system composed of pigs, but also poultry as competent hosts, and dogs, cattle and humans as non-competent hosts. We used a mathematical model representing Japanese encephalitis virus (JEV) transmission in a traditional Cambodian village that we calibrated with field data collected in 3 districts of Kandal province, Cambodia. First, R0 calculations allowed us to assess the capacity of the epidemiological system to be invaded by JEV and sustain virus transmission in villages in the 3 districts, and we predicted human exposure at the epidemiological equilibrium, based on simulations. Changes in spatial density of livestock, in agricultural practices, and epizootics (e.g., African swine fever), can profoundly alter the composition of host communities, which could affect JEV transmission and its impact on human health. In a second step, we then used the model to analyse how host community composition affected R0 and the predicted human exposure. Lastly, we evaluated the potential use of dog JE seroprevalence as an indicator of human exposure to JEV. In the modeled villages, the calculated R0 ranged from 1.07 to 1.38. Once the equilibrium reached, predicted annual probability of human exposure ranged from 9% to 47%, and predicted average age at infection was low, between 2 and 11 years old, highlighting the risk of severe forms of JEV infection and the need to intensify child immunization. According to the model, increasing the proportion of competent hosts induced a decrease in age at infection. The simulations also showed that JEV could invade a multi-host system with no pigs, reinforcing the assumption of poultry acting as reservoirs. Finally, the annual human exposure probability appeared linearly correlated with dog seroprevalence, suggesting that in our specific study area, dog seroprevalence would be a good proxy for human exposure.  相似文献   

3.
BackgroundJapanese encephalitis virus (JEV) is an important cause of encephalitis in most of Asia, with high case fatality rates and often significant neurologic sequelae among survivors. The epidemiology of JE in the Philippines is not well defined. To support consideration of JE vaccine for introduction into the national schedule in the Philippines, we conducted a systematic literature review and summarized JE surveillance data from 2011 to 2014.MethodsWe conducted searches on Japanese encephalitis and the Philippines in four databases and one library. Data from acute encephalitis syndrome (AES) and JE surveillance and from the national reference laboratory from January 2011 to March 2014 were tabulated and mapped.ResultsWe identified 29 published reports and presentations on JE in the Philippines, including 5 serologic surveys, 18 reports of clinical cases, and 8 animal studies (including two with both clinical cases and animal data). The 18 clinical studies reported 257 cases of laboratory-confirmed JE from 1972 to 2013. JE virus (JEV) was the causative agent in 7% to 18% of cases of clinical meningitis and encephalitis combined, and 16% to 40% of clinical encephalitis cases. JE predominantly affected children under 15 years of age and 6% to 7% of cases resulted in death. Surveillance data from January 2011 to March 2014 identified 73 (15%) laboratory-confirmed JE cases out of 497 cases tested.SummaryThis comprehensive review demonstrates the endemicity and extensive geographic range of JE in the Philippines, and supports the use of JE vaccine in the country. Continued and improved surveillance with laboratory confirmation is needed to systematically quantify the burden of JE, to provide information that can guide prioritization of high risk areas in the country and determination of appropriate age and schedule of vaccine introduction, and to measure the impact of preventive measures including immunization against this important public health threat.  相似文献   

4.
捕捉法ELISA检测流行性乙型脑炎IgM抗体用于早期快速诊断   总被引:3,自引:1,他引:2  
张礼壁  刘玉清 《病毒学报》1989,5(4):378-382
  相似文献   

5.
Japanese encephalitis virus (JEV), transmitted by culicine mosquitoes, is endemic throughout much of South‐East Asia, extending to the Korean Peninsula. The zoonotic cycle is from large water birds to culicine mosquitoes, with swine as an amplifying host and man as an incidental host. Culex tritaeniorhynchus, the primary JEV vector in the Republic of Korea, populations peak in late August through to early September when most cases of Japanese encephalitis (JE) are reported. Cx. tritaeniorhynchus were observed near the Demilitarized Zone in each of the years that mosquitoes were assayed for JEV. Each year that vector mosquitoes were assayed for JEV, minimum field infection rates (number of JEV positive mosquites/1000 Cx. tritaeniorhynchus assayed) ranged from 0.31 to 3.27. The epidemiology of JE has been recorded in Korea for more than half a century, from 1949 to 2005. During a major epidemic in 1949, there were 5616 cases and 2729 deaths reported, with levels persisting near epidemic levels of 1000 cases annually thereafter until 1969. Following the introduction and government mandated mass immunization in 1971, JE decreased dramatically. Since 1984, 0–6 cases of JE have been reported each year. However, continued evidence of mosquitoes positive for JEV indicates that JE continues to be a civilian and military health threat to immunocompromised persons in Korea, as well as non‐immune US soldiers, civilians and their family members.  相似文献   

6.
Japanese encephalitis (JE) is a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). Pigs and water birds are the main amplifying and maintenance hosts of the virus. In this study, we conducted a JEV survey in mosquitoes captured in pig farms and water bird wetland habitats in Taiwan during 2005 to 2012. A total of 102,633 mosquitoes were collected. Culex tritaeniorhynchus was the most common mosquito species found in the pig farms and wetlands. Among the 26 mosquito species collected, 11 tested positive for JEV by RT-PCR, including Cx. tritaeniorhynchus, Cx. annulus, Anopheles sinensis, Armigeres subalbatus, and Cx. fuscocephala. Among those testing positive, Cx. tritaeniorhynchus was the predominant vector species for the transmission of JEV genotypes I and III in Taiwan. The JEV infection rate was significantly higher in the mosquitoes from the pig farms than those from the wetlands. A phylogenetic analysis of the JEV envelope gene sequences isolated from the captured mosquitoes demonstrated that the predominant JEV genotype has shifted from genotype III to genotype I (GI), providing evidence for transmission cycle maintenance and multiple introductions of the GI strains in Taiwan during 2008 to 2012. This study demonstrates the intense JEV transmission activity in Taiwan, highlights the importance of JE vaccination for controlling the epidemic, and provides valuable information for the assessment of the vaccine''s efficacy.  相似文献   

7.
8.

Background

India is endemic to Japanese encephalitis virus (JEV) and recurrent outbreaks occur mainly in rice growing areas. Pigs are considered to be the amplifying host for JEV and infection in gestating pigs results in reproductive failure. Most studies conducted on JEV infection in Indian pigs have been serological surveys and very little is known about JEV genotypes circulating in pigs. So the potential risk posed by pigs in JEV transmission and the genetic relationship between viruses circulating in pigs, mosquitoes and humans is poorly understood.

Methodology/Principal Findings

This study was conducted in pigs with a history of reproductive failure characterized by stillborn piglets with neuropathological lesions. Japanese encephalitis (JE) suspected brain specimens inoculated intracerebrally into mice and Vero cells resulted in successful isolation of JEV/SW/IVRI/395A/2014. Clinicopathological observations in infected mice, demonstration of JEV antigen in brain, and analysis of the envelope protein identified the swine isolate as being neurovirulent. Phylogenetic analysis based on prM and E gene sequences showed that it belonged to genotype III. This swine isolate was closely related to JEV associated with the 2005 outbreak in India and JaoArS982 from Japan. Phylogenetic analysis of JEV strains collected between 1956 and 2014 in India categorized the GIII viruses into different clades blurring their spatial distribution, which has been discernible in the previous century.

Conclusions/Significance

Isolation of JEV from stillborn piglets and its close genetic relationship with viruses detected at least three decades ago in humans and mosquitoes in Japan suggests that the virus may have been circulating among Indian pigs for several decades. The close similarity between the present swine isolate and those detected in humans affected in the 2005 outbreak in Uttar Pradesh, India, suggests the need for more intensive surveillance of pigs and implementation of suitable strategies to control JE in India.  相似文献   

9.
BackgroundSporadic Japanese encephalitis (JE) cases still have been reported in Zhejiang Province in recent years, and concerns about vaccine cross-protection and population-level immunity have been raised off and on within the public health sphere. Genotype I (GI) has replaced GIII as the dominant genotype in Asian countries during the past few decades, which caused considerable concerns about the potential change of epidemiology characteristics and the vaccine effectiveness. The aim of this study was to investigate the prevalence of JE neutralizing antibody and its waning antibody trend after live attenuated JE vaccine immunization. Additionally, this study analyzed the molecular characteristics of the E gene of Zhejiang Japanese encephalitis virus (JEV) strains, and established genetic relationships with other JEV strains.Conclusion/SignificancesJE neutralizing antibody positive rates increase in age ≥10 years old population, likely reflecting natural infection or natural boosting of immunity through exposure to wild virus. JE seropositivity rates were quite low in <35 years old age groups in Zhejiang Province. Waning of neutralizing antibody after live attenuated vaccine immunization was observed, but the clinical significance should be further investigated. Both the peripheral antibody response and genetic characterization indicate that current live attenuated JE vaccine conferred equal neutralizing potency against GI or GIII of wild strains. GI has replaced GIII as the dominant genotype in Zhejiang in the past few decades. Although the chance of exposure to wild JE virus has reduced, the virus still circulates in nature; therefore, it is necessary to implement immunization program for children continually and to conduct surveillance activity periodically.  相似文献   

10.
Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I-IV. It reveals low similarity between XZ0934 and genotype I-IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic.  相似文献   

11.
Minocycline is broadly protective in neurological disease models featuring inflammation and cell death and is being evaluated in clinical trials. Japanese encephalitis virus (JEV) is one of the most important causes of viral encephalitis worldwide. There is no specific treatment for Japanese encephalitis (JE) and no effective antiviral drugs have been discovered. Studies indicate that JE involves profound neuronal loss as well as secondary inflammation caused because of cell death. Minocycline is a semisynthetic second-generation tetracycline that exerts anti-inflammatory and antiapoptotic effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against experimental model of JE. Intravenous inoculation of GP78 strain of JEV in adult mice results in lethal encephalitis and caused primarily because of neuronal death and secondary inflammation caused because of cell death. Minocycline confers complete protection in mice following JEV infection ( p  < 0.0001). Neuronal apoptosis, microglial activation, active caspase activity, proinflammatory mediators, and viral titer were markedly decreased in minocycline-treated JEV infected mice on ninth day post-infection. Treatment with minocycline may act directly on brain cells, because neuronal cell line Neuro2a were also salvaged from JEV-induced death. Our data suggest that minocycline may be a candidate to consider in human clinical trials for JE patients.  相似文献   

12.
Das S  Basu A 《Journal of neurochemistry》2008,106(4):1624-1636
Japanese encephalitis virus (JEV), a common cause of encephalitis in humans, especially in children, leads to substantial neuronal injury. The survivors of JEV infection have severe cognitive impairment, motor and behavioral disorders. We hypothesize that depletion of neural progenitor cells (NPCs) by the virus culminates in neurological sequelae in survivors of Japanese encephalitis (JE). We utilized both in vivo model of JEV infection and in vitro neurosphere cultures to study progressive JEV infection. Cellular infection and cell death was determined by flow cytometry. BrdU administration in animals and in neurospheres was used to determine the proliferative ability of NPCs. JEV leads to massive loss of actively proliferating NPC population from the subventricular zone (SVZ). The ability of JEV infected subventricular zone cells to form neurospheres is severely compromised. This can be attributed to JEV infection in NPCs, which however do not result in robust death of the resilient NPC cells. Instead, JEV suppresses the cycling ability of these cells, preventing their proliferation. JEV primarily targets at a critical postnatal age and severely diminishes the NPC pool in SVZ, thus impairing the process of recovery after the insult. This arrested growth and proliferation of NPCs might have an effect on the neurological consequences in JE survivors.  相似文献   

13.
After an extensive vaccination policy, Japanese encephalitis (JE) was nearly eliminated since the mid-1980s in South Korea. Vaccination in children shifted the affected age of JE patients from children to adults. However, an abrupt increase in JE cases occurred in 2010, and this trend has continued. The present study aimed to investigate the prevalence of neutralizing antibodies to the JE virus (JEV) among high-risk age groups (≥40 years) in South Korea. A plaque reduction neutralization test was conducted to evaluate the prevalence of neutralizing antibodies to JEV in 945 subjects within four age groups (30–39, 40–49, 50–59, and 60–69 years) in 10 provinces. Of the 945 enrolled subjects, 927 (98.1%) exhibited antibodies against JEV. No significant differences were found in the prevalence of neutralizing antibodies according to sex, age, or occupation. However, there were significant differences in the plaque reduction rate according to age and occupation; oldest age group had a higher reduction rate, and subjects who were employed in agriculture or forestry also had a higher value than the other occupations. We also found that three provinces (Gangwon, Jeonnam, and Gyeongnam) had a relatively lower plaque reduction rate than the other locations. In addition, enzyme-linked immunosorbent assays were conducted to determine recent viral infections and 12 (2.2%) subjects were found to have been recently infected by the virus. In conclusion, the present study clearly indicated that the prevalence of neutralizing antibodies has been maintained at very high levels among adult age groups owing to vaccination or natural infections, or both. In the future, serosurveillance should be conducted periodically using more representative samples to better understand the population-level immunity to JE in South Korea.  相似文献   

14.

Background

Culex tritaeniorhynchus is the primary vector of Japanese encephalitis virus (JEV), a leading cause of encephalitis in Asia. JEV is transmitted in an enzootic cycle involving large wading birds as the reservoirs and swine as amplifying hosts. The development of a JEV vaccine reduced the number of JE cases in regions with comprehensive childhood vaccination programs, such as in Japan and the Republic of Korea. However, the lack of vaccine programs or insufficient coverage of populations in other endemic countries leaves many people susceptible to JEV. The aim of this study was to predict the distribution of Culex tritaeniorhynchus using ecological niche modeling.

Methods/Principal Findings

An ecological niche model was constructed using the Maxent program to map the areas with suitable environmental conditions for the Cx. tritaeniorhynchus vector. Program input consisted of environmental data (temperature, elevation, rainfall) and known locations of vector presence resulting from an extensive literature search and records from MosquitoMap. The statistically significant Maxent model of the estimated probability of Cx. tritaeniorhynchus presence showed that the mean temperatures of the wettest quarter had the greatest impact on the model. Further, the majority of human Japanese encephalitis (JE) cases were located in regions with higher estimated probability of Cx. tritaeniorhynchus presence.

Conclusions/Significance

Our ecological niche model of the estimated probability of Cx. tritaeniorhynchus presence provides a framework for better allocation of vector control resources, particularly in locations where JEV vaccinations are unavailable. Furthermore, this model provides estimates of vector probability that could improve vector surveillance programs and JE control efforts.  相似文献   

15.
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus,which causes the most commonly diagnosed viral encephalitis named Japanese encephalitis (JE) in the world with an unclear pathogenesis.Axl,a receptor tyrosine kinase from TAM family,plays crucial role in many inflammatory diseases.We have previously discovered that Axl deficiency resulted in more severe body weight loss in mice during JEV infection,which we speculate is due to the anti-inflammatory effect of Axl during JE.Currently,the role of Axl in regulating the neuroinflammation and brain damage during JE has not been investigated yet.In this study,by using Axl deficient and heterozygous control mice,we discovered that Axl deficient mice displayed accelerated JE progression and exacerbated brain damage characterized by increased neural cell death,extended infiltration of inflammatory cells,and enhanced production of pro-inflammatory cytokines,in comparison to control mice.Additionally,consistent with our previous report,Axl deficiency had no impact on the infection and target cell tropism of JEV in brain.Taken together,our results suggest that Axl plays an anti-inflammatory and neuroprotective role during the pathogenesis of JE.  相似文献   

16.
Japanese encephalitis virus (JEV) induces human peripheral blood monocytes to secrete a chemotactic cytokine [human macrophage-derived factor (hMDF)] which causes chemotaxis of neutrophils. The only known assay for hMDF cannot quantify its level in samples, so an enzyme immunoassay has been standardized for detection of hMDF and hMDF-specific antibodies in test samples. The reported enzyme linked immunosorbent assay (ELISA) was found to be sensitive (89%), specific (91%), accurate (92 2%) and reproducible and was able to detect a minimum concentration of 23 ng hMDF/ml in test samples. The chemotactic factor could be detected in JEV inoculated mouse sera and JEV infected culture fluids. Significant finding of the test was the detection of hMDF in sera of human cases of JE.  相似文献   

17.
Japanese encephalitis virus (JEV) causes significant viral encephalitis and is distributed throughout the Asian countries. The virus is known to be transmitted by Culex tritaeniorhynchus, which mainly breeds in rice paddies in Korea. In this study, we investigated the presence of other mosquito species that can transmit JEV as a second or regional vector. We selected five cities where patients have experienced JE in the last 5 years as mosquito-collecting locations and subdivided them into four collection sites according to the mosquito habitats (cowshed, downtown area, forest, and swamp). Mosquitoes were caught using the BG-Sentinel trap, CDC black-light trap, Fay-Prince trap, and Gravid trap. A total of 993 pools from 22,774 mosquitoes were prepared according to their species, collection date, and site. We performed a SYBR Green 1-based real-time RT-PCR assay to detect JEV from the mosquito pools. A total of six JEV-positive pools were detected from Culex orientalis and Culex pipiens caught in the Gangwon-do and Gyeonngi-do provinces. All the detected JEVs were revealed as genotype V by phylogenetic analysis of the envelope gene. Our findings confirm that a new genotype of JEV was introduced in Korea and suggest that two mosquito species may play a role in JEV transmission.  相似文献   

18.
Japanese encephalitis (JE) is a significant cause of human morbidity and mortality throughout Asia and Africa. Vaccines have reduced the incidence of JE in some countries, but no specific antiviral therapy is currently available. The NS3 protein of Japanese encephalitis virus (JEV) is a multifunctional protein combining protease, helicase and nucleoside 5'-triphosphatase (NTPase) activities. The crystal structure of the catalytic domain of this protein has recently been solved using a roentgenographic method. This enabled structure-based virtual screening for novel inhibitors of JEV NS3 helicase/NTPase. The aim of the present research was to identify novel potent medicinal substances for the treatment of JE. In the first step of studies, the natural ligand ATP and two known JEV NS3 helicase/NTPase inhibitors were docked to their molecular target. The refined structure of the enzyme was used to construct a pharmacophore model for JEV NS3 helicase/NTPase inhibitors. The freely available ZINC database of lead-like compounds was then screened for novel inhibitors. About 1 161 000 compounds have been screened and 15 derivatives of the highest scores have been selected. These compounds were docked to the JEV NS3 helicase/NTPase to examine their binding mode and verify screening results by consensus scoring procedure.  相似文献   

19.
Japanese encephalitis (JE) is the leading form of viral encephalitis in Asia. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. JEV is endemic to many parts of Asia, where periodic outbreaks take hundreds of lives. Despite the catastrophes it causes, JE has remained a tropical disease uncommon in the West. With rapid globalization and climatic shift, JEV has started to emerge in areas where the threat was previously unknown. Scientific evidence predicts that JEV will soon become a global pathogen and cause of worldwide pandemics. Although some research documents JEV pathogenesis and drug discovery, worldwide awareness of the need for extensive research to deal with JE is still lacking. This review focuses on the exigency of developing a worldwide effort to acknowledge the prime importance of performing an extensive study of this thus far neglected tropical viral disease. This review also outlines the pathogenesis, the scientific efforts channeled into develop a therapy, and the outlook for a possible future breakthrough addressing this killer disease.  相似文献   

20.
Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and causes thousands of severe encephalitis cases and deaths each year. Although Japanese encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underreported and the true burden of the disease is not well understood in most endemic countries. Here, we first conducted a spatial analysis of the risk factors associated with JE to identify the areas suitable for sustained JEV transmission and the size of the population living in at-risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from age-specific incidence data. Estimates of the susceptible population size and the current FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range: 31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission. Based on the baseline number of people at risk of infection, there were an estimated 56,847 (95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019. Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520 (95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and 114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest estimated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we estimate that vaccination had the largest absolute impact in China, with 204,734 (95% CI: 74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Taiwan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to vaccination. Our estimates of the size of at-risk populations and current JE incidence highlight countries where increasing vaccination coverage could have the largest impact on reducing their JE burden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号