首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) which occurs in approximately 30% of all AML patients still has a poor prognosis. This study aimed to examine the effect of decitabine (DAC) on FLT3-ITD positive AML. In our study, we found that expression of FLT3 and its downstream targets was decreased in FLT3-ITD mutant cell lines treated with DAC. DAC treatment could increase the percentage of apoptotic cells and CD11b positive cells tested by flow cytometry and upregulate the expression of cleaved caspase3, cleaved PARP, C/EBPa and PU.1 detected by western blot. To explore the effect of increased expression of PU.1 on FLT3 protein, we transiently transfected MOLM13 and MV4-11 cells with siRNA against PU.1 and a siRNA control. In both FLT3-ITD positive cells, the effect of DAC on downregulation of FLT3 was diminished in PU.1-konckdown MOLM13 and MV4-11 cells and there was a decrease of CD11b expression after PU.1 knockdown. Furthermore, the percentage of apoptotic cells was also decreased in PU.1-konckdown cells compared with siRNA control-expressing cells with the same dose of DAC. These findings indicated that DAC upregulated PU.1 to induce downregulation of FLT3 to trigger apoptosis. DAC was also found efficacious in mouse xenograft models of FLT3-ITD AML in our study. These findings may provide a novel theoretical basis for treatment of FLT3-ITD positive AML patients.  相似文献   

2.
3.
4.
5.
FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML). Internal tandem duplications (ITDs) in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.  相似文献   

6.
Forkhead box M1 (FoxM1) drives cell cycle progression and the prevention of growth arrest and is over-expressed in many human malignancies. However, the characteristics of FoxM1 in acute myeloid leukemia (AML) are not clearly understood. We investigated the expression level of FoxM1 and analyzed the correlation of FoxM1 expression with AML patient characteristics and prognoses. Changes in FoxM1 expression were detected after MV4–11 cells, which have an internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 gene (FLT3-ITD), and control THP1 cells (encoding wild-type FLT3) were treated with the FLT3 receptor tyrosine kinase inhibitor AC220 (quizartinib) or FLT3 ligand (FL). Finally, we determined the apoptosis rates after the addition of the FoxM1 inhibitor thiostrepton (TST) to AML cells with or without FLT3-ITD. The expression of FoxM1 in AML patients was correlated with the presence of FLT3-ITD, genetic groups, and possibly overall survival. Inhibition of FLT3-ITD by AC220 down-regulated FoxM1 expression in MV4–11 cells, and stimulation of FLT3 by FL up-regulated FoxM1 expression in MV4–11 and THP1 cells. TST induced the apoptosis of MV4–11 and THP1 cells in a dose-dependent manner. Thus, FoxM1 is a potential prognostic marker and a promising therapeutic target in AML.  相似文献   

7.
Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22phox, a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22phox and p22phox-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22phox, and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22phox localize to the nuclear membrane in MV4–11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22phox mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability.  相似文献   

8.
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a block in differentiation and uncontrolled proliferation. FLT3 is a commonly mutated gene found in AML patients. In clinical trials, the presence of a FLT3-ITD mutation significantly correlates with an increased risk of relapse and dismal overall survival. Therefore, activated FLT3 is a promising molecular target for AML therapies. In this study, we have shown that green tea polyphenols including (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), and (−)-epicatechin-3-gallate (ECG) suppress the proliferation of AML cells. Interestingly, EGCG, EGC and ECG showed the inhibition of FLT3 expression in cell lines harboring FLT3 mutations. In the THP-1 cells harboring FLT3 wild-type, EGCG showed the suppression of cell proliferation but did not suppress the expression of FLT3 even at the concentration that suppress 100% cell proliferation. Moreover, EGCG-, EGC-and ECG-treated cells showed the suppression of MAPK, AKT and STAT5 phosphorylation. Altogether, we suggest that green tea polyphenols could serve as reagents for treatment or prevention of leukemia harboring FLT3 mutations.  相似文献   

9.
BackgroundAcute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.MethodsWe screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups.ResultsEight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups.ConclusionThis study constitutes the first report from Pakistan reporting significant molecular mutation analysis of RUNX1 and FLT3 genes including FLT3 expression evaluation with follow-up. This provides an insight that aforementioned mutations are markers of poor prognosis but the study with a large AML cohort will be useful to further investigate their role in disease biology of AML.  相似文献   

10.
11.
12.
Fms-like tyrosine kinase-3 (FLT3) is a growth factor receptor normally expressed on hematopoietic progenitor cells. Approximately one third of all patients with AML carry an activating mutation in FLT3 that drives proliferation and survival of the leukemic cells. The most common activating mutation is the so-called internal tandem duplication (ITD), which involves an in-frame duplication of a segment of varying length in the region of the FLT3 gene that encodes the juxtamembrane domain. The pathways downstream of FLT3-ITD are partially known but further knowledge regarding the downstream signal transduction molecules is important in order to develop alternative strategies for pharmacological intervention.In this paper we have studied the role of MEK/ERK5 in FLT3-ITD mediated transformation. We have found that both wild-type FLT3 and FLT3-ITD activate MEK5 leading to the activation of ERK5. By use of the selective inhibitor of MEK5, BIX02188, we have shown that activation of AKT downstream of FLT3 is partially dependent on ERK5. Furthermore, inhibition of MEK5/ERK5 induces apoptosis of both FLT3-ITD transfected Ba/F3 cells as well as the FLT3-ITD carrying leukemic cell lines MV4-11 and MOLM-13. These results suggest that MEK5/ERK5 is important for FLT3-ITD induced hematopoietic transformation and may thus represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia.  相似文献   

13.

Background

Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.

Methodology/Principal Findings

Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.

Conclusions/Significance

These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.  相似文献   

14.
Epigenetic consequences of AML1-ETO action at the human c-FMS locus   总被引:2,自引:0,他引:2  
  相似文献   

15.
The detailed characterization of genetic and molecular aberrations in acute myeloid leukemia (AML) has substantially improved our understanding of the pathogenesis of this disease. With an incidence of up to 12% in all AML cases, the translocation t(8;21), forming the AML1-ETO fusion gene, is one of the most common genetic aberrations in AML. Experimental data have shown that AML1-ETO is not sufficient to induce leukemia by itself, but has to collaborate with other genetic alterations for leukemic transformation. These data are supported by observations in AML patients, who recurrently show activating mutations of the receptor tyrosine kinase FLT3 or c-KIT together with the AML1-ETO fusion gene. These findings might have clinical implications and provide a rationale to test RTK inhibitors in the treatment of patients with core binding factor AML and concurrent activating RTK mutations.  相似文献   

16.
Acute myeloid leukemia (AML) is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA) has been successfully introduced to treat acute promyelocytic leukemia (APL), it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA) were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA). Furazolidone (FZD) was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.  相似文献   

17.
The internal tandem duplication (ITD) of the juxtamembrane region of the FLT3 receptor has been associated with increased reactive oxygen species (ROS) generation in acute myeloid leukemia (AML). How this elevated level of ROS contributes to the leukemic phenotype, however, remains poorly understood. In this work we show that ROS in the FLT3-ITD expressing AML cell line MV4-11 is reduced by treatment with PKC412, an inhibitor of FLT3, DPI, a flavoprotein inhibitor, and VAS2870, a Nox specific inhibitor, suggesting that ROS production is both FLT3 and NADPH oxidase dependent. The majority of these ROS co-localize to the endoplasmic reticulum (ER), as determined with the H(2)O(2)-specific aryl-boronate dye Peroxyorange 1, which also corresponds to co-localization of p22phox. Moreover, knocking down p22phox dramatically reduces H(2)O(2) after 24 hours in the ER, without affecting mitochondrial ROS. Significantly, the FLT3 inhibitor PKC412 reduces H(2)O(2) in FLT3-ITD expressing cell lines (MV4-11, MOLM-13) through reduction of p22phox over 24 hours. Reduced p22phox is achieved by proteasomal degradation and is prevented upon GSK3-β inhibition. Knockdown of p22phox resulted in reduced STAT5 signalling and reduced Pim-1 levels in the cells after 24 hours. Thus, we have shown that FLT3 driven H(2)O(2) production in AML cells is mediated by p22phox and is critical for STAT5 signalling.  相似文献   

18.
19.
FLT3-ITD and FLT3-TKD mutations are frequently found in acute myeloid leukemia (AML). This makes tyrosine kinase FLT3 a highly attractive target for therapeutic drug development. However, effective drugs have not yet emerged. This study is intended to identify and to characterize new FLT3 inhibitors. By using the protein substrate GST-FLT3S to analyze kinase activity of recombinant proteins carrying the catalytic domain of wild type and mutant forms of FLT3, we screened a chemical library containing 80 known protein kinase inhibitors. We identified SU11652 as a potent FLT3 inhibitor and further employed FLT3-ITD-positive MV- 4–11 cells to study its effects on cell growth, apoptosis, cell cycles, and cell signaling. SU11652 strongly inhibited the activity of wild type, D835Y, and D835H mutant forms of FLT3 with IC50 values of 1.5, 16, and 32 nM, respectively. It effectively blocked the growth of FLT3-ITD -positive MV-4-11 cells at nanomolar concentrations but exhibited much less effects on several other cells which do not carry mutations of FLT3. SU11652 inhibited growth of MV-4-11 cells by inducing apoptosis, causing cell cycle arrest, and blocking activation of the ERK, Akt, and STAT signaling pathways. SU11652 is a potent FLT3 inhibitor which selectively targets FLT3-ITD-positive cells. It should serve as a good candidate for development of therapeutic drugs to treat AML.  相似文献   

20.
FMS-like tyrosine kinase 3 (FLT3) is an independent poor prognostic marker of acute myeloid leukemia (AML), and strategies that specifically target FLT3 are therefore of substantial interest. However, previous studies with FLT3 inhibitors as single agents in patients with AML showed few clinical responses. In the present study, combined effects of FLT3 selective inhibitor (SC-203048) and NF-κB selective inhibitor (Parthenolide, PTL) on AML xenograft tumor growth in vivo were examined, and the possible antitumor mechanisms by which SC-203048 and PTL affect AML xenograft tumor growth were also detected. Results showed that the tumor growth was strongly inhibited, and increased cell apoptosis was also observed after treatments, especially in the combination group; meanwhile, the expressions of FLT3, p65, cyclin D1, and Bc1-2 decreased significantly, and the expression of nuclear Silencing mediator for retinoic acid and thyroid hormone receptors (SMRT) increased notably. All results indicate that synergism exists between FLT3 and NF-κB inhibitors, and inhibitors combination treatment may be a potential strategy for AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号