首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
In Alphaproteobacteria, the general stress response (GSR) is controlled by a conserved partner switch composed of the sigma factor σEcfG, its anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. Many species possess paralogues of one or several components of the system, but their roles remain largely elusive. Among Alphaproteobacteria that have been genome-sequenced so far, the genus Methylobacterium possesses the largest number of σEcfG proteins. Here, we analyzed the six σEcfG paralogues of Methylobacterium extorquens AM1. We show that these sigma factors are not truly redundant, but instead exhibit major and minor contributions to stress resistance and GSR target gene expression. We identify distinct levels of regulation for the different sigma factors, as well as two NepR paralogues that interact with PhyR. Our results suggest that in M. extorquens AM1, ecfG and nepR paralogues have diverged in order to assume new roles that might allow integration of positive and negative feedback loops in the regulatory system. Comparison of the core elements of the GSR regulatory network in Methylobacterium species provides evidence for high plasticity and rapid evolution of the GSR core network in this genus.  相似文献   

7.
Replication of Brucella inside eukaryotic cells is essential for pathogenesis, and successful infection requires rapid adaptation to the intracellular milieu. Close relatives of Brucella use the two-component system FixLJ to survive inside the host. We aimed to identify a homologous sensor in Brucella abortus. A predicted protein with transmembrane and conserved histidine kinase domains was identified as the Fix-like Brucella sensor, FlbS. Although it lacks the PAS domain, recombinant FlbS binds haem in vitro. An internal in-frame deletion in flbS severely decreased B. abortus survival inside professional and non-professional phagocytes. This phenotype was reverted by genetic complementation. These results indicate the critical role of this haemoprotein in the intracellular lifestyle of Brucella.  相似文献   

8.
Brucella quorum sensing has been described as an important regulatory system controlling crucial virulence determinants such as the VirB type IV secretion system and the flagellar genes. However, the basis of quorum sensing, namely the production of autoinducers in Brucella has been questioned. Here, we report data obtained from the use of a genetic tool allowing the in situ detection of long-chain N-acyl-homoserine lactones (AHL) activity at single bacterium level in Brucella melitensis. These data are consistent with an intrinsic production of AHL by B. melitensis in low concentration both during in vitro growth and macrophage infection. Moreover, we identified a protein, named AibP, which is homologous to the AHL-acylases of various bacterial species. In vitro and during infection, expression of aibP coincided with a decrease in endogenous AHL activity within B. melitensis, suggesting that AibP could efficiently impair AHL accumulation. Furthermore, we showed that deletion of aibP in B. melitensis resulted in enhanced virB genes expression and VirB8 production as well as in a reduced flagellar genes expression and production of FlgE (hook protein) and FliC (flagellin) in vitro. Altogether, these results suggest that AHL-dependent quorum sensing and AHL-quorum quenching coexist in Brucella, at least to regulate its virulence.  相似文献   

9.
10.
11.
12.
The virB genes coding type IV secretion system are necessary for the intracellular survival and replication of Brucella spp. In this study, extracellular proteins from B. abortus 2308 (wild type, WT) and its isogenic virB10 polar mutant were compared. Culture supernatants harvested in the early stationary phase were concentrated and subjected to 2D electrophoresis. Spots present in the WT strain but absent in the virB10 mutant (differential spots) were considered extracellular proteins released in a virB-related manner, and were identified by MALDI-TOF analysis and matching with Brucella genomes. Among the 11 differential proteins identified, DnaK chaperone (Hsp70), choloylglycine hydrolase (CGH) and a peptidyl-prolyl cis–trans isomerase (PPIase) were chosen for further investigation because of their homology with extracellular and/or virulence factors from other bacteria. The three proteins were obtained in recombinant form and specific monoclonal antibodies (mAbs) were prepared. By Western blot with these mAbs, the three proteins were detected in supernatants from the WT but not in those from the virB10 polar mutant or from strains carrying non-polar mutations in virB10 or virB11 genes. These results suggest that the expression of virB genes affects the extracellular release of DnaK, PPIase and CGH, and possibly other proteins from B. abortus.  相似文献   

13.
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1α−/− murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1α, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.  相似文献   

14.
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.  相似文献   

15.
The hom-1-thrB operon encodes homoserine dehydrogenase resistant to feedback inhibition by L-threonine and homoserine kinase. Stable expression of this operon has not yet been attained in different Corynebacterium glutamicum strains. We studied the use of chromosomal integration and of a low-copy-number vector for moderate expression of the hom-1-thrB operon to enable an analysis of the physiological consequences of its expression in C. glutamicum. Strains carrying one, two, or three copies of hom-1-thrB were obtained. They showed proportionally increased enzyme activity of feedback-resistant homoserine dehydrogenase and of homoserine kinase. This phenotype was stably maintained in all recombinants for more than 70 generations. In a lysine-producing C. glutamicum strain which does not produce any threonine, expression of one copy of hom-1-thrB resulted in the secretion of 39 mM threonine. Additional copies resulted in a higher, although not proportional, accumulation of threonine (up to 69 mM). This indicates further limitations of threonine production. As the copy number of hom-1-thrB increased, increasing amounts of homoserine (up to 23 mM) and isoleucine (up to 34 mM) were secreted. Determination of the cytosolic concentration of the respective amino acids revealed an increase of intracellular threonine from 9 to 100 mM and of intracellular homoserine from 4 to 74 mM as the copy number of hom-1-thrB increased. These results suggest that threonine production with C. glutamicum is limited by the efflux system for this amino acid. Furthermore, the results show the successful use of moderate and stable hom-1-thrB expression for directing the carbon flux from aspartate to threonine.  相似文献   

16.
17.
In Escherichia coli, certain mutations in the cpxA gene (encoding a sensor kinase of a two-component signal transduction system) randomize the location of FtsZ ring assembly and dramatically affect cell division. However, deletion of the cpxRA operon, encoding the sensor kinase and its cognate regulator CpxR, has no effect on division site biogenesis. It appears that certain mutant sensor kinases (CpxA*) either exhibit hyperactivity on CpxR or extend their signalling activity to one or more noncognate response regulators involved in cell division.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号