首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AimsTo investigate the effect of vanillin, a dietary component, on adipocyte differentiation and the mechanism involved in the process using 3T3-L1 murine preadipocytes.Main methodsThe effect of vanillin on adipocyte differentiation was detected by Oil Red O analysis. The activation of extracellular signal regulated kinase 42/44 (ERK 42/44), Akt, expression of the key regulator of adipocyte differentiation peroxisome proliferators-activated receptor (PPARγ) and its target gene glucose transporter 4 (GLUT4) were detected by western blotting. Glucose uptake assay was used to determine the insulin sensitivity of adipocytes differentiated by vanillin treatment. To confirm the role of ERK 42/44 and Akt, Oil Red O analysis was performed with cells differentiated in the presence or absence of ERK inhibitor U0126 or Akt kinase 1/2 inhibitor.Key findingsVanillin induced adipocyte differentiation in 3T3-L1 cells in a dose dependent manner and also increased the expression levels of PPARγ and its target gene GLUT4. The adipocytes differentiated by vanillin exhibited insulin sensitivity as demonstrated by a significant increase in glucose uptake. Vanillin treatment activated the phosphorylation of ERK 42/44 during the initial phase of adipocyte differentiation but there was no significant change in the Akt phosphorylation status.SignificanceThe data show that vanillin induces adipocyte differentiation in 3T3-L1 cells by activating ERK42/44 and these adipocytes are insulin sensitive in nature.  相似文献   

3.
Background aimsBone marrow (BM)-derived progenitor cells are under investigation for cardiovascular repair but may be altered by disease. Our aim was to identify differences in gene expression in CD133+ cells of patients with coronary artery disease (CAD) and healthy controls, and determine whether exercise modifies gene expression.MethodsCD133+ cells were flow-sorted from 10 CAD patients and four controls, and total RNA was isolated for microarray-based gene expression profiling. Genes that were found to be differentially regulated in patients were analyzed further to investigate whether exercise had any normalizing effect on CD133+ cells in CAD patients following 3 months of an exercise program.ResultsImprovement in effort tolerance and increases in the number of CD133+ cells were observed in CAD patients after 3 months of exercise. Gene expression analysis of the CD133+ cells identified 82 differentially expressed genes (2-fold cut-off, 25% false-discovery rate and % present calls) in patients compared with controls, of which 59 were found to be up-regulated and 23 down-regulated. These genes were found to be involved in carbohydrate metabolism, cell cycle, cellular development and signaling, and molecular transport. Following completion of the exercise program, gene expression patterns resembled those of controls in seven of 10 patients.ConclusionsAlterations in gene expression of BM-derived CD133+ progenitor cells were found in CAD patients, which in part may be normalized by exercise.  相似文献   

4.
ObjectiveTo demonstrate the hypothesis that aerobic exercise training inhibits the development of insulin resistance through IL-6 and probe into the possible molecular mechanism about it.MethodsRats were raised with high-fat diets for 8 weeks to develop insulin resistance, and glucose infusion rates (GIRs) were determined by hyperinsulinemic–euglycemic clamping to confirm the development of insulin resistance. Aerobic exercise training (the speed and duration time in the first week were respectively 16 m/min and 50 min, and speed increased 1 m/min and duration time increased 5 min every week following it) and/or IL-6shRNA plasmid injection (rats received IL-6shRNA injection via the tail vein every two weeks) were adopted during the development of insulin resistance. The serum IL-6, leptin, adiponectin, fasting blood glucose, fasting serum insulin, GIR, IL-6 gene expression levels, p-p38 in various tissues and p-STAT3/t-STAT3 ratio in the liver were measured.ResultsRats fed with high-fat diets for 8 weeks were developed insulin resistance and the IL-6mRNA levels of IL-6shRNA injection groups in various tissues were significantly lower than those of control group (P < 0.05), respectively. The development of insulin resistance in exercise rats significantly decreased, however, compared with that, the GIR of exercise rats injected by IL-6shRNA was lower (P < 0.05). The IL-6mRNA levels were highest in the fat tissue and lowest in the skeletal muscles in all the rats. The serum adiponectin levels decreased (P < 0.05) following the development of insulin resistance, and it increased (P < 0.05) when the rats were intervened by aerobic exercise training for 8 weeks at the same time. However, there were not significant differences when serum leptin concentrations were compared (P > 0.05). The p-p38 significantly increased in the rats fed with high-fat diets, however, p-p38 of the exercise high-fat diets rats in the liver and fat tissues significantly decreased than that (P < 0.05). The changes of p-p38 in exercise rats injected by IL-6shRNA were irregular. The activation of STAT3 in the liver significantly increased (P < 0.05) following the development of insulin resistance, and it decreased (P < 0.05) when the rats were intervened by aerobic exercise training for 8 weeks at the same time, and the gene silencing of IL-6 did not have effects on the activation of STAT3 in the liver (P > 0.05).ConclusionsIn conclusion, aerobic exercise training prevented the development of insulin resistance through IL-6 to a certain degree. The gene expression and secretion of IL-6 could inhibit the development of insulin resistance. The mechanism of the effects were possibly related with elevating the levels of serum adiponectin, and/or inhibiting the activation of STAT3 in the liver and p38MAPK in the skeletal muscles, liver and fat tissues.  相似文献   

5.
Wang Z  Koike T  Li P  Jiang H  Natsume Y  Mu L  Chen T  Oshida Y 《Life sciences》2012,90(9-10):322-327
AimThis study was to determine whether combination of the angiotensin II AT1 receptor blocker (ARB), candesartan cilexetil, and exercise training can prevent the development of high-fat diet-induced insulin resistance.Main methodsF344/NSlc rats were fed normal chow diet or high-fat (HF) diet for 7 weeks. The HF-fed rats were either administered candesartan cilexetil (5 mg·kg? 1·day? 1), exercise-trained, or received a combination of these 2 treatments.Key findingsOral glucose tolerance tests (OGTT) showed that combined treatment with candesartan cilexetil and exercise increased glucose tolerance as compared with each treatment alone in HF-fed rats. Moreover, euglycemic–hyperinsulinemic clamp analysis showed improvement in glucose infusion rate with exercise training or candesartan cilexetil treatment alone, and further improvement was observed with the combination treatment. Systolic blood pressure improved with candesartan cilexetil but not with exercise alone. Finally, Glut-4 protein expression in soleus muscle was decreased with HF diet, and the expression was increased by exercise and not candesartan cilexetil treatment.SignificanceThese results suggest that the combination of candesartan cilexetil and exercise training improves insulin resistance as compared with each treatment alone.  相似文献   

6.
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3?/? mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3?/? mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.  相似文献   

7.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   

8.
Perinatal maternal high-fat consumption is known to increase the obesity and type 2 diabetes susceptibility and to impair exercise performance in the offspring. We hypothesize that epigenetic modifications in the skeletal muscle are partly responsible for this phenotype. To detect skeletal muscle genes affected by maternal nutrition, male offspring of low-fat (LF) and high-fat (HF) diet fed dams (BL6 mice) received LF diet upon weaning and were sacrificed at 6 or 25 weeks of age. Gene expression of Musculus quadriceps was investigated by microarray analysis revealing an up-regulation of the nuclear receptor Nr4a1 by maternal HF feeding. This was accompanied by promoter hypomethylation of CpG-1408 which correlated with increased Nr4a1 gene expression at both ages. Offspring voluntary exercise training (by supplying running wheels from 7 to 25 weeks of age) normalized Nr4a1 methylation and gene expression respectively, and ameliorated the negative effects of maternal HF feeding on insulin sensitivity. Overall, Nr4a1 gene expression in skeletal muscle correlated with higher insulin levels during an oral glucose tolerance test and could, therefore, be involved in programming type 2 diabetes susceptibility in offspring exposed to perinatal high fat diet.  相似文献   

9.

Background

South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.

Methodology/Principal Findings

Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4±5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46±2.20 vs 6.00±1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.

Conclusions/Significance

These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.  相似文献   

10.
BackgroundAn acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women.MethodsInactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR).ResultsThere was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05).ConclusionsOverweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females.  相似文献   

11.
Objectives: Obesity is an important risk factor for the development of insulin resistance and type 2 diabetes. Recently, a newly described circulating hormone resistin, which is expressed primarily in adipocytes, has been shown to antagonize insulin action in mice. Resistin, therefore, has been suggested to play a role in the pathogenesis of insulin resistance. Research Methods and Procedures: We studied the expression of the resistin gene in primary cultured human adipocytes and preadipocytes. We also examined resistin gene expression in subcutaneous abdominal adipocytes in women (n = 24) over a wide range of body weight and insulin sensitivity. Results: Whereas resistin gene expression was barely detectable in mature adipocytes, it was highly expressed in preadipocytes. Adipogenic differentiation of preadipocytes was associated with a time-dependent down-regulation of resistin gene expression. There was no relationship between body weight, insulin sensitivity, or other metabolic parameters and adipocyte resistin gene expression in the clinical study. Discussion: Together these findings do not support an important role of adipose-tissue resistin gene expression in human insulin resistance.  相似文献   

12.
13.

Background

Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats.

Methods

Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); MIT plus K252A TrkB blocker (MITK); high-intensity training (HIT); and HIT plus K252a (HITK). Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay), glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured.

Principal Findings

Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner.

Conclusions/Significance

Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.  相似文献   

14.
Park S  Hong SM  Lee JE  Sung SR 《Life sciences》2007,80(26):2428-2435
Investigated in this study are the effects and mechanisms of exercise and chlorpromazine (CPZ), a widely used conventional antipsychotic drug, on the hepatic insulin sensitivity of 90% pancreatectomized (Px) male Sprague–Dawley rats. The Px diabetic rats were provided with 0, 5, or 50 mg CPZ per kg of body weight (No-CPZ, LCPZ, or HCPZ) for 8 weeks, and half of each group had regular exercise. LCPZ did not exacerbate hepatic insulin sensitivity through insulin and leptin signaling in diabetic rats. However, HCPZ decreased whole-body glucose infusion rates in hyperinsulinemic clamped states, but not whole-body glucose uptake. This was due to the elevated hepatic glucose output in hyperinsulinemic states. The decreased hepatic insulin sensitivity was associated with insulin receptor substrate-2 (IRS2) protein levels in the liver. Decreased IRS2 levels attenuated hepatic insulin and leptin signaling pathways in hyperinsulinemic states, which elevated glucose production by inducing phosphoenolpyruvate carboxykinase expression. Long-term exercise recovered hepatic insulin sensitivity attenuated by HCPZ to reduce the hepatic glucose output in hyperinsulinemic clamped states. This recovery was related to enhanced insulin and leptin signaling via increased IRS2 gene and protein levels by activating the cAMP responding element-binding protein, but exercise improved only insulin signaling. In conclusion, HCPZ exacerbates hepatic insulin action by attenuating insulin and leptin signaling in type 2 diabetic rats, while regular exercise partially reverses the attenuation of hepatic insulin sensitivity by improving insulin signaling. Enhancement of insulin and leptin signaling through an induction of IRS2 may play an important role in improving hepatic glucose homeostasis.  相似文献   

15.
16.
Background:Evidence indicates that combined approaches based on exercise and nutrition benefit neural development. We aimed to determine the effect of saffron and endurance training on hippocampus neurogenic factors, neurotrophin-3 gene expression in soleus muscle, and short-term memory in Wistar rats.Methods:The study analyzed four groups of ten rats each: control, exercise, saffron, and saffron plus exercise. The rats in the exercise groups were trained on a rodent motor-driven treadmill. All rats were gavage daily with either saffron extract (40 mg/kg) or water. After eight weeks of intervention all rats were evaluated using the novel object recognition (NOR) test. Blood and tissue samples were collected to measure proteins and neurotrophin-3 gene expression.Results:Rats that received saffron treatment combined with exercise had significantly greater brain-derived neurotrophic factor (BDNF) and serotonin in hippocampus compared to the control and saffron-only-treated rats (p< 0.05). Neurotrophin-3 mRNA in soleus muscle was higher in the saffron plus exercise group than rats in the other three groups (p< 0.05). Hippocampus 5-hydroxyindolacetic acid and short-term memory were significantly greater in all the intervention groups than in the control group (p< 0.05).Conclusion:Saffron, combined with endurance exercise, synergistically increased hippocampus BDNF, serotonin, and muscular neurotrophin-3 mRNA in Wistar rats.Key Words: Endurance Exercise, Memory, Hippocampus, Saffron, Neurotransmitter  相似文献   

17.
《Endocrine practice》2012,18(5):685-693
ObjectiveTo determine whether the administration of 6 months of daily metformin treatment in women with polycystic ovary syndrome (PCOS) would significantly improve pancreatic β-cell function as measured by an increase in the disposition index.MethodsWe enrolled women with PCOS from a private practice and from the Mount Sinai Hospital Endocrinology Clinic. All patients underwent frequently sampled intravenous glucose tolerance tests both on and off 500 to 1000 mg of twice daily metformin. Values of insulin sensitivity, glucose effectiveness, acute insulin response to glucose, and disposition index were calculated for each test. The product of acute insulin response to glucose and insulin sensitivity yielded the disposition index and estimated the degree of β-cell compensation for insulin resistance.ResultsWe enrolled 14 women. We observed no significant changes in insulin sensitivity, glucose effectiveness, or acute insulin response to glucose, disposition index, or distributed glucose at time 0 before or after metformin treatment. Patients with PCOS treated with metformin remained statistically on the same hyperbolic curve, which is consistent with previously reported results of the effect of metformin on β-cell function. In contrast, the proportional change in disposition index correlated significantly with the proportional change in insulin sensitivity. Patients whose insulin sensitivity decreased after treatment showed a proportional decrease in disposition index, while patients whose insulin sensitivity increased showed a proportional increase in disposition index.ConclusionsOur findings suggest that acute insulin response to glucose does not proportionately change to match change in insulin sensitivity. Thus, there may be a β-cell defect in women with PCOS. (Endocr Pract. 2012;18:685-693)  相似文献   

18.
《Endocrine practice》2007,13(6):679-686
ObjectiveTo review the relationship between insulin resistance and thrombogenesis, especially in the context of obesity, diabetes, and cardiovascular disease, and to discuss therapeutic implications.MethodsThe pertinent peer-reviewed literature was examined for evidence in support of the aforementioned relationship, and the reported efficacy of various therapeutic interventions was assessed.ResultsRobust evidence indicates that insulin resistance and enhanced thrombogenesis are closely related pathophysiologic mechanisms, especially in the presence of obesity. Thus, targeting insulin resistance and thrombogenesis may be of value in the prevention and management of type 2 diabetes and associated cardiovascular morbidity and mortality. Many proven preventive and therapeutic strategies, such as weight loss, exercise, and various pharmaceutical agents, affect both thrombogenesis and insulin resistance.ConclusionBoth insulin resistance and thrombogenesis contribute to the morbidity and mortality associated with obesity, diabetes, and cardiovascular disease. Effective measures for prevention and management of diabetes and cardiovascular disease also tend to improve insulin sensitivity and to ameliorate abnormalities in coagulation, fibrinolysis, and platelet function. (Endocr Pract. 2007;13:679-686)  相似文献   

19.
20.
BackgroundSalt-inducible kinase 2 (SIK2) is abundant in adipocytes, but downregulated in adipose tissue from individuals with obesity and insulin resistance. Moreover, SIK isoforms are required for normal insulin signalling and glucose uptake in adipocytes, but the underlying molecular mechanisms are currently not known. The adherens junction protein JUP, also termed plakoglobin or γ-catenin, has recently been reported to promote insulin signalling in muscle cells.ObjectiveThe objective of this study was to analyse if JUP is required for insulin signalling in adipocytes and the underlying molecular mechanisms of this regulation.MethodsCo-expression of SIK2 and JUP mRNA levels in adipose tissue from a human cohort was analysed. siRNA silencing and/or pharmacological inhibition of SIK2, JUP, class IIa HDACs and CRTC2 was employed in 3T3-L1- and primary rat adipocytes. JUP protein expression was analysed by western blot and mRNA levels by qPCR. Insulin signalling was evaluated by western blot as levels of phosphorylated PKB/Akt and AS160, and by monitoring the uptake of 3H-2-deoxyglucose.ResultsmRNA expression of SIK2 correlated with that of JUP in human adipose tissue. SIK2 inhibition or silencing resulted in downregulation of JUP mRNA and protein expression in 3T3-L1- and in primary rat adipocytes. Moreover, JUP silencing reduced the expression of PKB and the downstream substrate AS160, and consequently attenuated activity in the insulin signalling pathway, including insulin-induced glucose uptake. The known SIK2 substrates CRTC2 and class IIa HDACs were found to play a role in the SIK-mediated regulation of JUP expression.ConclusionsThese findings identify JUP as a novel player in the regulation of insulin sensitivity in adipocytes, and suggest that changes in JUP expression could contribute to the effect of SIK2 on insulin signalling in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号