首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
CJ Xiong  B Huang  Y Zhou  YP Cun  LT Liu  J Wang  CQ Li  Y Pan  H Wang 《PloS one》2012,7(8):e43984

Background

Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that regulates inflammatory reactions and the pathophysiology of many inflammatory diseases. Intervertebral disc (IVD) degeneration is characterized by an inflammatory reaction, but the potential role of MIF in IVD degeneration has not been determined. Recent studies have shown that MIF and its receptor, CD74, are involved in regulating the migration of human mesenchymal stem cells (MSCs); Thus, MIF might impair the ability of mesenchymal stem cells (MSCs) to home to injured tissues. Our previous studies indicated that cartilage endplate (CEP)-derived stem cells (CESCs) as a type of MSCs exist in human degenerate IVDs. Here, we investigate the role of MIF in regulating the migration of CESCs.

Methods and Findings

CESCs were isolated and identified. We have shown that MIF was distributed in human degenerate IVD tissues and was subject to regulation by the pro-inflammatory cytokine TNF-α. Furthermore, in vitro cell migration assays revealed that nucleus pulposus (NP) cells inhibited the migration of CESCs in a number-dependent manner, and ELISA assays revealed that the amount of MIF in conditioned medium (CM) was significantly increased as a function of increasing cell number. Additionally, recombinant human MIF (r-MIF) inhibited the migration of CESCs in a dose-dependent manner. CESCs migration was restored when an antagonist of MIF, (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), was added. Finally, a CD74 activating antibody (CD74Ab) was used to examine the effect of CD74 on CESCs motility and inhibited the migration of CESCs in a dose-dependent manner.

Conclusions

We have identified and characterized a novel regulatory mechanism governing cell migration during IVD degeneration. The results will benefit understanding of another possible mechanism for IVD degeneration, and might provide a new method to repair degenerate IVD by enhancing CESCs migration to degenerated NP tissues to exert their regenerative effects.  相似文献   

3.

Introduction

Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors.

Methods

Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ).

Results

The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections.

Conclusion

We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.  相似文献   

4.
Cells isolated from intervertebral disc (IVD) tissues of human surgical samples are one of potential sources for the IVD cellular therapy. The purpose of this study was to develop a new non-enzymatic method, “tissue incubation”, for isolating human IVD cells. The IVD tissues of annulus fibrosus (AF) and nucleus pulposus (NP) were incubated separately in tissue culture flasks with culture medium. After 7–10 days incubation, cells were able to migrate out of IVD tissues and proliferate in vitro. After 3–4 weeks culture, expanded cells were harvested by trypsinization, and the remaining tissues were transferred to a new flask for another round of incubation. The molecular phenotype of IVD cells from juvenile and adult human samples was evaluated by both flow cytometry analysis and immunocytochemical staining for the expression of protein markers of NP cells (CD24, CD54, CD239, integrin α6 and laminin α5). Flow cytometry confirmed that both AF and NP cells of all ages positively expressed CD54 and integrin α6, with higher expression levels in NP cells than in AF cells for the juvenile group sample. However, CD24 expression was only found in juvenile NP cells, and not in AF or older disc cells. Similar expression patterns for NP markers were also confirmed by immunocytochemistry. In summary, this new non-enzymatic tissue incubation method for cell isolation preserves molecular phenotypic markers of NP cells and may provide a valuable cell source for the study of NP regeneration strategies.  相似文献   

5.
IntroductionEarly degenerative changes in the nucleus pulposus (NP) are observed after the disappearance of notochordal cells (NCs). Thus, it has been suggested that NCs play an important role in maintaining the NP and may have a regenerative potential on other cells of the NP. As the number of resident NP cells (NPCs) decreases in a degenerating disc, mesenchymal stromal (stem) cells (MSCs) may be used for cell supplementation. In this study, using cells of one species, the regenerative potential of canine NCs was assessed in long-term three-dimensional coculture with canine NPCs or MSCs.MethodsCanine NCs and canine NPCs or MSCs were cocultured in alginate beads for 28 days under hypoxic and high-osmolarity conditions. Cell viability, cell morphology and DNA content, extracellular matrix production and expression of genes related to NC markers (Brachyury, KRT18) and NP matrix production (ACAN, COL2A1, COL1A1) were assessed after 1, 15 and 28 days of culture.ResultsNCs did not completely maintain their phenotype (morphology, matrix production, gene expression) during 28 days of culture. In cocultures of NPCs and NCs, both extracellular matrix content and anabolic gene expression remained unchanged compared with monoculture groups, whereas cocultures of MSCs and NCs showed increased glycosaminoglycan/DNA. However, the deposition of these proteoglycans was observed near the NCs and not the MSCs. Brachyury expression in the MSC and NC coculture group increased in time. The latter two findings indicate a trophic effect of MSCs on NCs rather than vice versa.ConclusionsNo regenerative potential of canine NCs on canine NPCs or MSCs was observed in this study. However, significant changes in NC phenotype in long-term culture may have resulted in a suboptimal regenerative potential of these NCs. In this respect, NC-conditioned medium may be better than coculture for future studies of the regenerative potential of NCs.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0569-6) contains supplementary material, which is available to authorized users.  相似文献   

6.

Introduction

The aims of these studies were to identify the cytokine and chemokine expression profile of nucleus pulposus (NP) cells and to determine the relationships between NP cell cytokine and chemokine production and the characteristic tissue changes seen during intervertebral disc (IVD) degeneration.

Methods

Real-time q-PCR cDNA Low Density Array (LDA) was used to investigate the expression of 91 cytokine and chemokine associated genes in NP cells from degenerate human IVDs. Further real-time q-PCR was used to investigate 30 selected cytokine and chemokine associated genes in NP cells from non-degenerate and degenerate IVDs and those from IVDs with immune cell infiltrates (‘infiltrated’). Immunohistochemistry (IHC) was performed for four selected cytokines and chemokines to confirm and localize protein expression in human NP tissue samples.

Results

LDA identified the expression of numerous cytokine and chemokine associated genes including 15 novel cytokines and chemokines. Further q-PCR gene expression studies identified differential expression patterns in NP cells derived from non-degenerate, degenerate and infiltrated IVDs. IHC confirmed NP cells as a source of IL-16, CCL2, CCL7 and CXCL8 and that protein expression of CCL2, CCL7 and CXCL8 increases concordant with histological degenerative tissue changes.

Conclusions

Our data indicates that NP cells are a source of cytokines and chemokines within the IVD and that these expression patterns are altered in IVD pathology. These findings may be important for the correct assessment of the ‘degenerate niche’ prior to autologous or allogeneic cell transplantation for biological therapy of the degenerate IVD.  相似文献   

7.
Degeneration of the intervertebral discs (IVD) is a leading cause of neck and low back pain. Degeneration begins in the central nucleus pulposus region, leading to loss of IVD osmotic properties. Regeneration approaches include administration of matrix-mimicking scaffolds, cells and/or therapeutic factors. Cell-targeting strategies are likely to improve delivery due to the low cell numbers in the IVD. Single-chain antibody fragments (scFvs) that bind IVD cells were isolated for potential delivery of therapeutics to degenerated IVD. The most cell-distal domain of neural cell adhesion molecule 1 (NCAM1) was cloned and expressed in Escherichia coli. Phage display technology was used to isolate a human scFv against the recombinant domain by panning a scFv library on the immobilised protein. The isolated scFv bound cultured rat astrocytes, as well as bovine nucleus pulposus and annulus fibrosus cells in immunocytochemical studies. The scFv also labelled cells in bovine spinal cord and six-month and two-year old bovine IVD sections by immunohistochemistry. Antibody fragments can provide cell-binding moieties at improved cost, time, yield and functionalisation potential over whole antibodies. The described scFv has potential application in delivery of therapeutics to NCAM1-expressing cells in degenerated IVD.  相似文献   

8.
Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years). Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative changes in NP may be problematic with regard to biologic treatment strategies. Hence, gene therapeutic interventions regulating relevant bioactive factors identified in this work might contribute to the development of regenerative treatment approaches for degenerative disc diseases.  相似文献   

9.

Background

Analgesic discography (discoblock) can be used to diagnose or treat discogenic low back pain by injecting a small amount of local anesthetics. However, recent in vitro studies have revealed cytotoxic effects of local anesthetics on intervertebral disc (IVD) cells. Here we aimed to investigate the deteriorative effects of lidocaine and bupivacaine on rabbit IVDs using an organotypic culture model and an in vivo long-term follow-up model.

Methods

For the organotypic culture model, rabbit IVDs were harvested and cultured for 3 or 7 days after intradiscal injection of local anesthetics (1% lidocaine or 0.5% bupivacaine). Nucleus pulposus (NP) cell death was measured using confocal microscopy. Histological and TUNEL assays were performed. For in vivo study, each local anesthetic was injected into rabbit lumbar IVDs under a fluoroscope. Six or 12 months after the injection, each IVD was prepared for magnetic resonance imaging (MRI) and histological analysis.

Results

In the organotypic culture model, both anesthetic agents induced time-dependent NP cell death; when compared with injected saline solution, significant effects were detected within 7 days. Compared with the saline group, TUNEL-positive NP cells were significantly increased in the bupivacaine group. In the in vivo study, MRI analysis did not show any significant difference. Histological analysis revealed that IVD degeneration occurred to a significantly level in the saline- and local anesthetics-injected groups compared with the untreated control or puncture-only groups. However, there was no significant difference between the saline and anesthetic agents groups.

Conclusions/Significance

In the in vivo model using healthy IVDs, there was no strong evidence to suggest that discoblock with local anesthetics has the potential of inducing IVD degeneration other than the initial mechanical damage of the pressurized injection. Further studies should be performed to investigate the deteriorative effects of the local injection of analgesic agents on degenerated IVDs.  相似文献   

10.

Introduction

Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.

Methods

Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age.

Results

Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells.

Conclusions

Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.  相似文献   

11.
IntroductionNutrient deprivation is a likely contributor to intervertebral disc (IVD) degeneration. Silent mating type information regulator 2 homolog 1 (SIRT1) protects cells against limited nutrition by modulation of apoptosis and autophagy. However, little evidence exists regarding the extent to which SIRT1 affects IVD cells. Therefore, we conducted an in vitro study using human IVD nucleus pulposus (NP) cells.MethodsThirty-two IVD specimens were obtained from patients who underwent surgical intervention and were categorized based on Pfirrmann IVD degeneration grades. Cells were isolated from the NP and cultured in the presence of recombinant human SIRT1 (rhSIRT1) under different serum conditions, including 10 % (v/v) fetal bovine serum (FBS) as normal nutrition (N) and 1 % (v/v) FBS as low nutrition (LN). 3-Methyladenine (3-MA) was used to inhibit autophagy. Autophagic activity was assessed by measuring the absorbance of monodansylcadaverine and immunostaining and Western blotting for light chain 3 and p62/SQSTM1. Apoptosis and pathway analyses were performed by flow cytometry and Western blotting.ResultsCells cultured under LN conditions decreased in number and exhibited enhanced autophagy compared with the N condition. Medium supplementation with rhSIRT1 inhibited this decrease in cell number and induced an additional increase in autophagic activity (P < 0.05), whereas the combined use of rhSIRT1 and 3-MA resulted in drastic decreases in cell number and autophagy (P < 0.05). The incidence of apoptotic cell death increased under the LN condition, which was decreased by rhSIRT1 (P < 0.05) but increased further by a combination of rhSIRT1 and 3-MA (P < 0.05). Under LN conditions, NP cells showed a decrease in antiapoptotic Bcl-2 and an increase in proapoptotic Bax, cleaved caspase 3, and cleaved caspase 9, indicating apoptosis induction via the mitochondrial pathway. These changes were suppressed by rhSIRT1 but elevated further by rhSIRT1 with 3-MA, suggesting an effect of rhSIRT1-induced autophagy on apoptosis inhibition. Furthermore, the observed autophagy and apoptosis were more remarkable in cells from IVDs of Pfirrmann grade IV than in those from IVDs of Pfirrmann grade II.ConclusionsSIRT1 protects against nutrient deprivation-induced mitochondrial apoptosis through autophagy induction in human IVD NP cells, suggesting that rhSIRT1 may be a potent treatment agent for human degenerative IVD disease.  相似文献   

12.
IntroductionStrategies for biological repair and regeneration of the intervertebral disc (IVD) by cell and tissue engineering are promising, but few have made it into a clinical setting. Recombinant human bone morphogenetic protein 7 (rhBMP-7) has been shown to stimulate matrix production by IVD cells in vitro and in vivo in animal models of induced IVD degeneration. The aim of this study was to determine the most effective dose of an intradiscal injection of rhBMP-7 in a spontaneous canine IVD degeneration model for translation into clinical application for patients with low back pain.MethodsCanine nucleus pulposus cells (NPCs) were cultured with rhBMP-7 to assess the anabolic effect of rhBMP-7 in vitro, and samples were evaluated for glycosaminoglycan (GAG) and DNA content, histology, and matrix-related gene expression. Three different dosages of rhBMP-7 (2.5 μg, 25 μg, and 250 μg) were injected in vivo into early degenerated IVDs of canines, which were followed up for six months by magnetic resonance imaging (T2-weighted images, T1rho and T2 maps). Post-mortem, the effects of rhBMP-7 were determined by radiography, computed tomography, and macroscopy, and by histological, biochemical (GAG, DNA, and collagen), and biomolecular analyses of IVD tissue.ResultsIn vitro, rhBMP-7 stimulated matrix production of canine NPCs as GAG deposition was enhanced, DNA content was maintained, and gene expression levels of ACAN and COL2A1 were significantly upregulated. Despite the wide dose range of rhBMP-7 (2.5 to 250 μg) administered in vivo, no regenerative effects were observed at the IVD level. Instead, extensive extradiscal bone formation was noticed after intradiscal injection of 25 μg and 250 μg of rhBMP-7.ConclusionsAn intradiscal bolus injection of 2.5 μg, 25 μg, and 250 μg rhBMP-7 showed no regenerative effects in a spontaneous canine IVD degeneration model. In contrast, intradiscal injection of 250 μg rhBMP-7, and to a lesser extent 25 μg rhBMP-7, resulted in extensive extradiscal bone formation, indicating that a bolus injection of rhBMP-7 alone cannot be used for treatment of IVD degeneration in human or canine patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0625-2) contains supplementary material, which is available to authorized users.  相似文献   

13.
Liu LT  Huang B  Li CQ  Zhuang Y  Wang J  Zhou Y 《PloS one》2011,6(10):e26285
Mesenchymal stem cells (MSCs) derived from adult tissues are an important candidate for cell-based therapies and regenerative medicine due to their multipotential differentiation capability. MSCs have been identified in many adult tissues but have not reported in the human intervertebral disc cartilage endplate (CEP). The initial purpose of this study was to determine whether MSCs exist in the degenerated human CEP. Next, the morphology, proliferation capacity, cell cycle, cell surface epitope profile and differentiation capacity of these CEP-derived stem cells (CESCs) were compared with bone-marrow MSCs (BM-MSCs). Lastly, whether CESCs are a suitable candidate for BM-MSCs was evaluated. Isolated cells from degenerated human CEP were seeded in an agarose suspension culture system to screen the proliferative cell clusters. Cell clusters were chosen and expanded in vitro and were compared with BM-MSCs derived from the same patient. The morphology, proliferation rate, cell cycle, immunophenotype and stem cell gene expression of the CESCs were similar to BM-MSCs. In addition, the CESCs could be induced into osteoblasts, adipocytes, chondrocytes, and are superior to BM-MSCs in terms of osteogenesis and chondrogenesis. This study is first to demonstrate the presence of stem cells in the human degenerated CEP. These results may improve our understanding of intervertebral disc (IVD) pathophysiology and the degeneration process, and could provide cell candidates for cell-based regenerative medicine and tissue engineering.  相似文献   

14.
15.
Low back pain is a major public health issue in the Western world, one main cause is believed to be intervertebral disc (IVD) degeneration. To halt/diminish IVD degeneration, cell therapy using different biomaterials e.g. hydrogels as cell carriers has been suggested. In this study, two different hydrogels were examined (in vitro) as potential cell carriers for human mesenchymal stem cells (hMSCs) intended for IVD transplantation. The aim was to investigate cell-survival and chondrogenic differentiation of hMSCs when cultured in hydrogels Puramatrix® or Hydromatrix® and potential effects of stimulation with growth hormone (GH). hMSCs/hydrogel cultures were investigated for cell-viability, attachment, gene expression of chondrogenic markers SOX9, COL2A1, ACAN and accumulation of extracellular matrix (ECM). In both hydrogel types, hMSCs were viable for 28 days, expressed integrin β1 which indicates adhesion of hMSCs. Differentiation was observed into chondrocyte-like cells, in a higher extent in hMSCs/Hydromatrix® cultures when compared to hMSCs/Puramatrix® hydrogel cultures. Gene expression analyses of chondrogenic markers verified results. hMSCs/hydrogel cultures stimulated with GH displayed no significant effects on chondrogenesis.In conclusion, both hydrogels, especially Hydromatrix® was demonstrated as a promising cell carrier in vitro for hMSCs, when directed into chondrogenesis. This knowledge could be useful in biological approaches for regeneration of degenerated human IVDs.  相似文献   

16.
Degeneration of intervertebral disc (IVD) is mainly a chronic process of excessive destruction of the extracellular matrix (ECM), and also is thought to be the primary cause of low back pain. Presently, however, the underlying mechanism of IVD degeneration is still not elucidated. Cellular loss from cell death has been believed to contribute to the degradation of ECM and plays an important role in the process of IVD degeneration, but the mechanisms of cell death in degenerated IVD remain unclear. Apoptosis, a very important type of IVD cell death, has been considered to play a crucial role in the process of degeneration. Autophagy, a non-apoptosis death type of programmed cell death, has been considered extensively involved in many pathological and physiological processes, including the degenerative diseases. Thus, the research on cell death in IVD degeneration has become a new focus recently. In this review, by analyzing the available literature pertaining to cell death in IVD and discussing the inducing factors of IVD degeneration, NP cells and ECM in IVD degeneration, apoptotic signal transduction pathways involved in IVD cell death, the relationship of cell death with IVD degeneration and potential therapeutic strategy for IVD degeneration by regulating cell death, we conclude that different stimuli induce cell death in IVD via various signal transduction pathways, and that cell death may play a key role in the degenerative process of IVD. Regulation of cell death could be a potential and attractive therapeutic strategy for IVD degeneration.  相似文献   

17.
Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG) for the outer annulus fibrosus (AF) phase and pig acellular cartilage ECM (ACECM) for the inner nucleus pulposus (NP) phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4±13.1 μm and 231.6±57.2 μm, respectively). PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence) were distributed in the scaffold, with no dead cells (red fluorescence) being found. The cell—scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell—scaffold constructs in vivo.  相似文献   

18.

Introduction

The relative resistance of non-chondrodystrophic (NCD) canines to degenerative disc disease (DDD) may be due to a combination of anabolic and anti-catabolic factors secreted by notochordal cells within the intervertebral disc (IVD) nucleus pulposus (NP). Factors known to induce DDD include interleukin-1 beta (IL-1ß) and/or Fas-Ligand (Fas-L). Therefore we evaluated the ability of notochordal cell conditioned medium (NCCM) to protect NP cells from IL-1ß and IL-1ß +FasL-mediated cell death and degeneration.

Methods

We cultured bovine NP cells with IL-1ß or IL-1ß+FasL under hypoxic serum-free conditions (3.5% O2) and treated the cells with either serum-free NCCM or basal medium (Advanced DMEM/F-12). We used flow cytometry to evaluate cell death and real-time (RT-)PCR to determine the gene expression of aggrecan, collagen 2, and link protein, mediators of matrix degradation ADAMTS-4 and MMP3, the matrix protection molecule TIMP1, the cluster of differentiation (CD)44 receptor, the inflammatory cytokine IL-6 and Ank. We then determined the expression of specific apoptotic pathways in bovine NP cells by characterizing the expression of activated caspases-3, -8 and -9 in the presence of IL-1ß+FasL when cultured with NCCM, conditioned medium obtained using bovine NP cells (BCCM), and basal medium all supplemented with 2% FBS.

Results

NCCM inhibits bovine NP cell death and apoptosis via suppression of activated caspase-9 and caspase-3/7. Furthermore, NCCM protects NP cells from the degradative effects of IL-1ß and IL-1ß+Fas-L by up-regulating the expression of anabolic/matrix protective genes (aggrecan, collagen type 2, CD44, link protein and TIMP-1) and down-regulating matrix degrading genes such as MMP-3. Expression of ADAMTS-4, which encodes a protein for aggrecan remodeling, is increased. NCCM also protects against IL-1+FasL-mediated down-regulation of Ank expression. Furthermore, NP cells treated with NCCM in the presence of IL-1ß+Fas-L down-regulate the expression of IL-6 by almost 50%. BCCM does not mediate cell death/apoptosis in target bovine NP cells.

Conclusions

Notochordal cell-secreted factors suppress NP cell death by inhibition of activated caspase-9 and -3/7 activity and by up-regulating genes contributing anabolic activity and matrix protection of the IVD NP. Harnessing the restorative powers of the notochordal cell could lead to novel cellular and molecular strategies in the treatment of DDD.  相似文献   

19.
Various mechanical stresses can induce apoptosis of nucleus pulposus (NP) cells and intervertebral disc (IVD) degeneration in vivo, but the underlying molecular mechanism by which the number of NP cells is decreased in degenerated IVD is still not elucidated. The purpose of this study was to investigate whether the mitochondrial pathway is involved in compression-induced apoptosis of rabbit NP cells. The compression apparatus was used to investigate the effect of the compression in this process at one magnitude (1.0 MPa) for 6, 12, 18, 24 and 36 h. Cell viability was measured by cell counting kit-8. Apoptosis rate was analyzed by flow cytometry and the morphologic changes in apoptosis cells were observed by the phase-contrast microscopy and Hoechst 33258 staining. The apoptosis-related gene and protein synthesis, such as Bax, Bcl-2 and Caspase-3, was analyzed by real-time polymerase chain reaction and Western-blot, respectively. Mitochondrial function was evaluated by analyzing the mitochondrial permeability transition pore (MPTP), as well as reactive oxygen species (ROS) and mitochondrial membrane potential (MMP). The results indicated that compression at the magnitude of all time points induced apoptosis of rabbit NP cells in a time-dependent manner, and the cell viability was reduced significantly. Furthermore, the compression at this level profoundly suppressed the functions of the mitochondria such as the opening of MPTP, the excessive production of ROS and the decreased MMP. Our findings suggest that the compression-induced IVD degeneration is mediated, at least in part, via the mitochondrial apoptotic pathway in NP cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号