共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
《Cell research》2002,(Z1)
There are two possible outcomes when DNA damage occurs in normal mammalian cells: either induction of cell-cycle checkpoint which inhibits the progress of the cell cycles as well as activates DNA repair pathways, or activation of apoptosis to eliminate damaged cells. The p53 tumour-suppressor gene plays a key role in selecting these pathways. In our present works, the human gastric cancer cell line AGS was treated with tripchlorolide, a potent antitumor compound purified from a Chinese herb Tripterygium Wilfordii Hook. Single cell gel electrophoresis (Comet assay) showed that the treatment of tripchlorolide resulted in DNA damage in AGS cells. The damaged AGS cells went through apoptosis, which was time- and dose- dependent. 相似文献
3.
Sanjeev Shukla Pingfu Fu Sanjay Gupta 《Apoptosis : an international journal on programmed cell death》2014,19(5):883-894
Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy. 相似文献
4.
PKCs have been implicated in the regulation of cellular differentiation, proliferation, apoptosis and signal transduction. It was demonstrated in this study that PKCα was located both at mitochondria and in cytosol in gastric cancer cell line BGC-823. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in the translocation of PKCα from both mitochondria and cytosol to nucleus as clearly shown by laserscanningconfocal microscopy, while the protein level of PKCα was not changed by TPA treatment as detected by Western blot. The results also revealed that TPA-induced translocation of PKCα was in close association with apoptosis induction, and such association was further affirmed by other experiments where various apoptotic stimuli and specific inhibitors of PKC were used. Taken together, these findings indicate that translocation of PKCα from both mitochondria and cytosol to nucleus in gastric cancer cell is accompanied by induction of apoptosis, and may imply a new mechanism of the potential linking between cell apoptosis and PKCα translocation. 相似文献
5.
PKCα translocation from mitochondria to nucleus is closely related to induction of apoptosis in gastric cancer cells 总被引:1,自引:0,他引:1
PKCs have been implicated in the regulation of cellular differentiation, proliferation, apoptosis and signal transduction. It was demonstrated in this study that PKCa was located both at mitochondria and in cytosol in gastric cancer cell line BGC-823. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in the translocation of PKCa from both mitochondria and cytosol to nucleus as clearly shown by laser-scanning-confocal microscopy, while the protein level of PKCa was not changed by TPA treatment as detected by Western blot. The results also revealed that TPA-induced translocation of PKCa was in close association with apoptosis induction, and such association was further affirmed by other experiments where various apoptotic stimuli and specific inhibitors of PKC were used. Taken together, these findings indicate that translocation of PKCa from both mitochondria and cytosol to nucleus in gastric cancer cell is accompanied by induction of apoptosis, and may imply a new mechanism of th 相似文献
6.
Xi X Gao L Hatala DA Smith DG Codispoti MC Gong B Kern TS Zhang JZ 《Biochemical and biophysical research communications》2005,326(3):548-553
Hyperglycemia induces apoptotic cell death in a variety of cell types in diabetes, and the mechanism remains unclear. We report here that culture of rat retinal glial Müller cells in 25 mM glucose for 72 h significantly inactivated Akt and induced apoptosis. Likewise, hyperglycemia caused a significant dephosphorylation of Akt at serine-473 in Müller cells in the retina of streptozotocin-induced diabetic rats. Inactivation of Akt was associated with dephosphorylation of BAD, increased cytochrome c release, and activation of caspase-3 and caspase-9. Upregulation of Akt activity by overexpression of constitutively active Akt inhibited elevated glucose-induced apoptosis, whereas downregulation of Akt activity by overexpression of dominant negative Akt exacerbated elevated glucose-induced apoptosis, as assessed by caspase activity and nucleic acid staining. These data suggest that apoptosis induced by chronically elevated glucose is at least in part mediated by downregulation of Akt survival pathway in cultured Müller cells. It has been reported that antiapoptotic effect of Akt requires glucose in growth factor withdrawal-induced apoptosis. Our data suggest that although acutely elevated glucose may be beneficial to the cell survival, chronically elevated glucose can cause apoptosis via downregulation of Akt survival signaling. 相似文献
7.
Cells of higher organisms can commit suicide in response to genomic alterations, a process called programmed cell death. Although it is commonly thought that the loss of programmed cell death is required for carcinogenesis, we argue that the situation is more complex and that the loss of programmed cell death can have the converse effect, preventing cancer progression. If the death rate of cancer cells is low, fewer cell divisions are required for the tumor to reach a certain size, resulting in the presence of fewer mutant cells. Therefore, the chances of overcoming potential selective barriers are reduced, rendering the failure of pathogenic progression probable. However, if there is a higher cell death rate, more cell divisions need to occur for the tumor to reach a certain size, resulting in the presence of more mutant cells and in an increased probability of overcoming selective barriers and cancer progression. 相似文献
8.
9.
The cellular prion protein (PrP(C)), which is highly expressed at synapses, was identified as a receptor for the amyloid-β (Aβ) oligomers that are associated with dementia in Alzheimer disease. Here, we report that Aβ oligomers secreted by 7PA2 cells caused synapse damage in cultured neurons via a PrP(C)-dependent process. Exogenous PrP(C) added to Prnp knock-out((0/0)) neurons was targeted to synapses and significantly increased Aβ-induced synapse damage. In contrast, the synapse damage induced by a phospholipase A(2)-activating peptide was independent of PrP(C). In Prnp wild-type((+/+)) neurons Aβ oligomers activated synaptic cytoplasmic phospholipase A(2) (cPLA(2)). In these cells, the addition of Aβ oligomers triggered the translocation of cPLA(2) in synapses to cholesterol dense membranes (lipid rafts) where it formed a complex also containing Aβ and PrP(C). In contrast, the addition of Aβ to Prnp((0/0)) neurons did not activate synaptic cPLA(2), which remained in the cytoplasm and was not associated with Aβ. Filtration assays and non-denaturing gels demonstrated that Aβ oligomers cross-link PrP(C). We propose that it is the cross-linkage of PrP(C) by Aβ oligomers that triggers abnormal activation of cPLA(2) and synapse damage. This hypothesis was supported by our observation that monoclonal antibody mediated cross-linkage of PrP(C) also activated synaptic cPLA(2) and caused synapse damage. 相似文献
10.
Inducible resistance to Fas—mediated apoptosis in B cells 总被引:6,自引:0,他引:6
Rothstein TL 《Cell research》2000,10(4):245-266
Apoptosis produced in B cells through Fas(APO-1,CD95) triggering is regulated by signals derived from other surface receptors:CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death,whereas antigen receptor engagement,or IL-4R engagement,inhibits Fas killing and in so doing induces a state of Fas-resistance,even in otherwise sensitive,CD40-stimulated targets.Surface immunoglobulin and IL-4R utilize at least partially distinct path ways to produce Fas-resistance that differentially depend on PKC and STAT6,respectively.Further,surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk,requires NF-κB,and entails new macromolecular synthesis.Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products,Bcl-XL and FLIP,and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule).faim was identified by differential display and exists in two alternatively spliced forms;faim-S is broadly expressed,but faim-L expression is tissue-specific.The FAIM sequence is highly evolu tionarily conserved,suggesting an important role for this molecule throughout phylogeny.Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells,whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity.Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion,and malignant lymphocytes to impede anti-tumor immunity. 相似文献
11.
Interferon-β (IFN-β) has been widely used in cancer therapy, but the clinical trial results are generally disappointing. Our previous studies have shown that an oncolytic adenovirus carrying IFN-β (ZD55-IFN-β) exhibits significant anti-tumor activities. However, the underlying mechanisms are not clear. Here we showed that ZD55-IFN-β infection-induced S-phase cell cycle arrest in a p53-dependent manner by activating the ataxia telangiectasia mutated-dependent DNA damage pathway. In addition, ZD55-IFN-β infection could initiate both caspase-dependent apoptosis and necroptosis in cancer cells. More importantly, ZD55-IFN-β showed a synergistic effect on cancer cells when combined with doxorubicin. These results suggest that the combination of ZD55-IFN-β with doxorubicin may represent a promising clinical strategy in cancer therapy. 相似文献
12.
Altered expression of nuclear matrix proteins in etoposide induced apoptosis in HL-60 cells 总被引:4,自引:0,他引:4
JinML ZhanP 《Cell research》2001,11(2):125-134
INTRODUCTIIONThe nuclear matrix is an essential component ofthe nucleus which is important for the nuclear structural integrity and specific genomic functions[1, 2].Several articles have reported that the nuclear matrix, as a higher order framework structures, mightbe disassembled du-ring the apoptotic process[3-5].Accordingly3 nuclear lamins A/C or B have beenfound to decrease in apoptotic thymocytes[6], Tcells[7], and carcinoma cell line[8, 9]. The nucleolar protein B23, an obscure ma… 相似文献
13.
14.
J Mao S Fan W Ma P Fan B Wang J Zhang H Wang B Tang Q Zhang X Yu L Wang B Song L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy. 相似文献
15.
16.
Cheng-Gang Jiang Ling Lv Fu-Rong Liu Zhen-Ning Wang Di Na Feng Li Jia-Bin Li Zhe Sun Hui-Mian Xu 《Cytokine》2013,61(1):173-180
Connective tissue growth factor (CTGF) is involved in human cancer development and progression. Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. In this study, we wished to investigate the role of CTGF in EMT of peritoneal mesothelial cells and the effects of CTGF on adhesion of gastric cancer cells to mesothelial cells. Human peritoneal mesothelial cells (HPMCs) were cultured with TGF-β1 or various concentrations of CTGF for different time. The EMT process was monitored by morphology. Real-time RT-PCR and Western blot were used to evaluate the expression of vimentin, α-SMA , E-cadherin and β-catenin. RNA interference was used to achieve selective and specific knockdown of CTGF. We demonstrated that CTGF induced EMT of mesothelial cells in a dose- and time-dependent manner. HPMCs were exposed to TGF-β1 also underwent EMT which was associated with the induction of CTGF expression. Transfection with CTGF siRNA was able to reverse the EMT partially after treatment of TGF-β1. Moreover, the induced EMT of HPMCs was associated with an increased adhesion of gastric cancer cells to mesothelial cells. These findings suggest that CTGF is not only an important mediator but a potent activator of EMT in peritoneal mesothelial cells, which in turn promotes gastric cancer cell adhesion to peritoneum. 相似文献
17.
Gastric cancer is a common malignancy with high mortality. Long noncoding RNA (lncRNA) zinc finger antisense (ZFAS)1 is upregulated in gastric cancer specimens compared with the para-carcinoma tissues. The silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion and epithelial-mesenchymal transition (EMT), and enhanced the sensitivity to cis-platinum or paclitaxel in SGC7901 cells, as evidenced by the expression changes of proliferating cell nuclear antigen, Cyclin D1, Cyclin E, Cyclin B1, E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-2 and MMP-14. The ZFAS1 also activated the Wnt/β-catenin signaling. Subsequently, the ZFAS1 knockdown-induced the inhibition of migration, invasion, EMT and resistance to chemotherapeutic reagens was reversed by the overexpression of β-catenin. In summary, the silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion, EMT and chemotherapeutic tolerance by blocking the Wnt/β-catenin signaling in gastric cancer cells. 相似文献
18.
Downregulation of CK2 induces apoptosis in cancer cells – A potential approach to cancer therapy 总被引:4,自引:0,他引:4
We have previously documented that naked antisense CK2α ODN can potently induce apoptosis in cancer cells in culture and in mouse xenograft human prostate cancer. The effects of the antisense CK2α are related to downregulation of CK2α message and rapid loss of the CK2 from the nuclear compartment. Here we demonstrate that downregulation of CK2 elicited by diverse methods leads to inhibition of cell growth and induction of apoptosis. The various approaches to downregulation of CK2 employed were transfection with kinase-inactive plasmid, use of CK2α siRNA, use of inhibitors of CK2 activity, and use of antisense CK2α ODN packaged in sub-50 nm nanocapsules made from tenascin. In all cases, the downregulation of CK2 is associated with loss in cell survival. We have also described preliminary observations on an approach to targeting CK2 in cancer cells. For this, sub-50 nm tenascin-based nanocapsules bearing the antisense CK2α ODN were employed to test that the antisense is delivered to the cancer cells in vivo. The results provide the first preliminary evidence that such an approach may be feasible for targeting CK2 in cancer cells. Together, our results suggest that CK2 is potentially a highly plausible target for cancer therapy. 相似文献
19.