首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Amyloid β (Aβ) peptides fibril formation and deposition is considered to be the principal pathological hallmark of Alzheimer's disease (AD). However, it remains obscure why AD is precluded by rat/mouse despite the high sequence identity (97%) of rat/mouse Aβ to its human homologue. Based on the recently proposed redox chemistry-based pathogenic model of neurodegenerative diseases, we hypothesize that the lack of key residues of rat/mouse Aβ compared with the human counterpart may account for why rat/mouse is free of AD. At the same time, we propose a new possible redox chemistry-based pathogenic model of AD based on the experimental observations of certain residues in triggering Aβ aggregation. Moreover, it is also interesting to note that non-mammalian Xenopus Aβ contains all the redox chemistry-related key residues and whether it implies that Xenopus Aβ possesses high amyloidogenic potency remains to be determined by further experimental study.  相似文献   

2.
The two hallmark pathologies of Alzheimer's disease (AD) are amyloid plaques, composed of the small amyloid-beta (Abeta) peptide, and neurofibrillary tangles, comprised aggregates of the microtubule binding protein, tau. The molecular linkage between these two lesions, however, remains unknown. Based on human and mouse studies, it is clear that the development of Abeta pathology can trigger tau pathology, either directly or indirectly. However, it remains to be established if the interaction between Abeta and tau is bidirectional and whether the modulation of tau will influence Abeta pathology. To address this question, we used the 3xTg-AD mouse model, which is characterized by the age-dependent buildup of both plaques and tangles. Here we show that genetically augmenting tau levels and hyperphosphorylation in the 3xTg-AD mice has no effect on the onset and progression of Abeta pathology. These data suggest that the link between Abeta and tau is predominantly if not exclusively unidirectional, which is consistent with the Abeta cascade hypothesis and may explain why tauopathy-only disorders are devoid of any Abeta pathology.  相似文献   

3.
Kienlen-Campard P  Octave JN 《Peptides》2002,23(7):1199-1204
The production of amyloid peptide (Abeta) from its precursor (APP) plays a key role in Alzheimer's disease (AD). However, the link between Abeta production and neuronal death remains elusive. We studied the biological effects associated with human APP expression and metabolism in rat cortical neurons. Human APP expressed in neurons is processed to produce Abeta and soluble APP. Moreover, human APP expression triggers neuronal death. Pepstatin A, an inhibitor of aspartyl proteases that reduces Abeta production, protects neurons from APP-induced neurotoxicity. This suggests that Abeta production is likely to be the critical event in the neurodegenerative process of AD.  相似文献   

4.
Immunization with amyloid-beta (Abeta) prevents the deposition of Abeta in the brain and memory deficits in transgenic mouse models of Alzheimer's disease (AD), opening the possibility for immunotherapy of AD in humans. Unfortunately, the first human trial of Abeta vaccination was complicated, in a small number of vaccinees, by cell-mediated meningoencephalitis. To develop an Abeta vaccine that lacks the potential to induce autoimmune encephalitis, we have generated papillomavirus-like particles (VLP) that display 1-9 aa of Abeta protein repetitively on the viral capsid surface (Abeta-VLP). This Abeta peptide was chosen because it contains a functional B cell epitope, but lacks known T cell epitopes. Rabbit and mouse vaccinations with Abeta-VLP were well tolerated and induced high-titer autoAb against Abeta, that inhibited effectively assembly of Abeta(1-42) peptides into neurotoxic fibrils in vitro. Following Abeta-VLP immunizations of APP/presenilin 1 transgenic mice, a model for human AD, we observed trends for reduced Abeta deposits in the brain and increased numbers of activated microglia. Furthermore, Abeta-VLP vaccinated mice also showed increased levels of Abeta in plasma, suggesting efflux from the brain into the vascular compartment. These results indicate that the Abeta-VLP vaccine induces an effective humoral immune response to Abeta and may thus form a basis to develop a safe and efficient immunotherapy for human AD.  相似文献   

5.
Parenteral immunization of transgenic mouse models of Alzheimer disease (AD) with synthetic amyloid beta-peptide (Abeta) prevented or reduced Abeta deposits and attenuated their memory and learning deficits. A clinical trial of immunization with synthetic Abeta, however, was halted due to brain inflammation, presumably induced by a toxic Abeta, T-cell- and/or Fc-mediated immune response. Another issue relating to such immunizations is that some AD patients may not be able to raise an adequate immune response to Abeta vaccination due to immunological tolerance or age-associated decline. Because peripheral administration of antibodies against Abeta also induced clearance of amyloid plaques in the model mice, injection of humanized Abeta antibodies has been proposed as a possible therapy for AD. By screening a human single-chain antibody (scFv) library for Abeta immunoreactivity, we have isolated a scFv that specifically reacts with oligomeric Abeta as well as amyloid plaques in the brain. The scFv inhibited Abeta amyloid fibril formation and Abeta-mediated cytotoxicity in vitro. We have tested the efficacy of the human scFv in a mouse model of AD (Tg2576 mice). Relative to control mice, injections of the scFv into the brain of Tg2576 mice reduced Abeta deposits. Because scFvs lack the Fc portion of the immunoglobulin molecule, human scFvs against Abeta may be useful to treat AD patients without eliciting brain inflammation.  相似文献   

6.
Amyloid-beta peptide (Abeta) has a key role in the pathogenesis of Alzheimer disease (AD). Immunization with Abeta in a transgenic mouse model of AD reduces both age-related accumulation of Abeta in the brain and associated cognitive impairment. Here we present the first analysis of human neuropathology after immunization with Abeta (AN-1792). Comparison with unimmunized cases of AD (n = 7) revealed the following unusual features in the immunized case, despite diagnostic neuropathological features of AD: (i) there were extensive areas of neocortex with very few Abeta plaques; (ii) those areas of cortex that were devoid of Abeta plaques contained densities of tangles, neuropil threads and cerebral amyloid angiopathy (CAA) similar to unimmunized AD, but lacked plaque-associated dystrophic neurites and astrocyte clusters; (iii) in some regions devoid of plaques, Abeta-immunoreactivity was associated with microglia; (iv) T-lymphocyte meningoencephalitis was present; and (v) cerebral white matter showed infiltration by macrophages. Findings (i)-(iii) strongly resemble the changes seen after Abeta immunotherapy in mouse models of AD and suggest that the immune response generated against the peptide elicited clearance of Abeta plaques in this patient. The T-lymphocyte meningoencephalitis is likely to correspond to the side effect seen in some other patients who received AN-1792 (refs. 7-9).  相似文献   

7.
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.  相似文献   

8.
Apolipoprotein E (apoE), a chaperone for the amyloid beta (Abeta) peptide, regulates the deposition and structure of Abeta that deposits in the brain in Alzheimer disease (AD). The primary apoE receptor that regulates levels of apoE in the brain is unknown. We report that the low density lipoprotein receptor (LDLR) regulates the cellular uptake and central nervous system levels of astrocyte-derived apoE. Cells lacking LDLR were unable to appreciably endocytose astrocyte-secreted apoE-containing lipoprotein particles. Moreover, cells overexpressing LDLR showed a dramatic increase in apoE endocytosis and degradation. We also found that LDLR knock-out (Ldlr-/-) mice had a significant, approximately 50% increase in the level of apoE in the cerebrospinal fluid and extracellular pools of the brain. However, when the PDAPP mouse model of AD was bred onto an Ldlr-/- background, we did not observe a significant change in brain Abeta levels either before or after the onset of Abeta deposition. Interestingly, human APOE3 or APOE4 (but not APOE2) knock-in mice bred on an Ldlr-/- background had a 210% and 380% increase, respectively, in the level of apoE in cerebrospinal fluid. These results demonstrate that central nervous system levels of both human and murine apoE are directly regulated by LDLR. Although the increase in murine apoE caused by LDLR deficiency was not sufficient to affect Abeta levels or deposition by 10 months of age in PDAPP mice, it remains a possibility that the increase in human apoE3 and apoE4 levels caused by LDLR deficiency will affect this process and could hold promise for therapeutic targets in AD.  相似文献   

9.
目的大鼠的大脑比小鼠更大,是研究神经系统的重要模型。建立APPswe/PS1dE9/TAU三转基因大鼠,发展能更全面表现人类阿尔兹海默病表型的动物模型。方法构建人PrP—hAPP695K595N/M596L、PrP-hPS1dE9和PDGF-TAU转基因表达载体,显微注射法制备转基因大鼠。PCR法鉴定转基因首建鼠及其子代基因型。Western blot检测转基因大鼠脑组织中人APP、PS1和TAU蛋白的表达。Morris水迷宫检测6月龄三转基因大鼠学习记忆能力改变。APP、PHF—TAU免疫组织化学染色观察三转基因大鼠脑组织APP及TAU的表达。结果得到1个同时高表达人APP、PS1和TAU三个基因的转基因大鼠品系。转基因大鼠6月龄已经出现显著的行为学改变:学习记忆能力下降,病理学改变表现为过度磷酸化TAU增多和神经元胞浆内AB表达异常增加。结论成功建立了APPswe/PS1dE9/TAU三转AD大鼠,可做为新一代工具动物模型用于基础医学和AD转化医学研究。  相似文献   

10.
Abeta derived from amyloid plaques of Alzheimer's disease-affected brain contain several oxidative posttranslational modifications. In this study we have characterized the amino acid content of human amyloid-derived Abeta and compared it with that of human synthetic Abeta subjected to metal-catalyzed oxidation. Human amyloid derived Abeta has an increased content of arginine (46%) and glutamate/glutamine residues (28%), but a decreased content of histidine residues (-32%) as compared to the expected amino acid content. Incubation of synthetic human Abeta with Cu(II), but not Fe(III), in the presence of H2O2 similarly induced a decrease in histidine residues (-79%), but also a decrease in tyrosine residues (-28%). Our results suggest that histidine and tyrosine are most vulnerable to metal mediated oxidative attack, consistent with our earlier findings that Cu coordinated via histidine residues is redox competent. Our results suggest that the loss of histidine residues in human amyloid-derived Abeta may be a result of Cu oxidation, and that unidentified post-translational mechanisms operate to modify other amino acids of Abeta in vivo.  相似文献   

11.
It has been recently reported that, in Xenopus oocytes injected with the mRNA for human renin, this secretory renal glycoprotein acquires phosphomannosyl residues on its asparagine-linked oligosaccharide chains, remains intracellular and undergoes a proteolytic cleavage which removes the prosegment. To understand the influence of glycosylation on the fate of renin in Xenopus oocytes and whether it is specific for human renin, we have expressed human renin and mouse Ren1 renin, which are glycosylated at two and three selected asparagine residues, respectively, and mouse Ren2 renin, which is not glycosylated, in Xenopus oocytes. The majority of human and Ren1 renins remained intracellular and underwent proteolytic cleavage, whereas mouse Ren2 renin was secreted efficiently. When human and Ren1 renins were expressed in oocytes treated with tunicamycin, both were secreted efficiently. A mutant of human renin, which had amino-acid substitutions at both glycosylation sites, was also secreted efficiently, whereas that mutated at one of the two sites was not. These results indicate that the majority of all of the glycosylated renin molecules remain intracellular and undergo proteolytic cleavage, probably due to the acquisition of phosphomannosyl residues, and the human renin remains intracellular if it is only glycosylated at one of the two sites.  相似文献   

12.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

13.
Convergent biochemical and genetic evidence suggests that the formation of beta-amyloid (Abeta) deposits in the brain is an important and, probably, seminal step in the development of Alzheimer's disease (AD). Recent studies support the hypothesis that Abeta soluble oligomers are the pathogenic species that prompt the disease. Inhibiting Abeta self-oligomerization could, therefore, provide a novel approach to treating the underlying cause of AD. Here, we designed potential peptide-based aggregation inhibitors containing Abeta amino acid sequences (KLVFF) from part of the binding region responsible for Abeta self-association (residues 16-20), with RG-/-GR residues added at their N- and C-terminal ends to aid solubility. Two such peptides (RGKLVFFGR, named OR1, and RGKLVFFGR-NH2, named OR2) were effective inhibitors of Abeta fibril formation, but only one of these peptides (OR2) inhibited Abeta oligomer formation. Interestingly, this same OR2 peptide was the only effective inhibitor of Abeta toxicity toward human neuroblastoma SH-SY5Y cells. Our data support the idea that Abeta oligomers are responsible for the cytotoxic effects of Abeta and identify a potential peptide inhibitor for further development as a novel therapy for AD.  相似文献   

14.
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.  相似文献   

15.
Amyloid-beta (Abeta) protofibrils are known intermediates of the in vitro Abeta aggregation process and the protofibrillogenic Arctic mutation (APPE693G) provides clinical support for a pathogenic role of Abeta protofibrils in Alzheimer's disease (AD). To verify their in vivo relevance and to establish a quantitative Abeta protofibril immunoassay, Abeta conformation dependent monoclonal antibodies were generated. One of these antibodies, mAb158 (IgG2a), was used in a sandwich ELISA to specifically detect picomolar concentrations of Abeta protofibrils without interference from Abeta monomers or the amyloid precursor protein (APP). The specificity and biological significance of this ELISA was demonstrated using cell cultures and transgenic mouse models expressing human APP containing the Swedish mutation (APPKN670/671ML), or the Swedish and Arctic mutation in combination. The mAb158 sandwich ELISA analysis revealed presence of Abeta protofibrils in both cell and animal models, proving that Abeta protofibrils are formed not only in vitro, but also in vivo. Furthermore, elevated Abeta protofibril levels in the Arctic-Swedish samples emphasize the usefulness of the Arctic mutation as a model of enhanced protofibril formation. This assay provides a novel tool for investigating the role of Abeta protofibrils in AD and has the potential of becoming an important diagnostic assay.  相似文献   

16.
Accumulation in brain of the beta-amyloid peptide (Abeta) is considered as crucial pathogenic event causing Alzheimer's disease (AD). Anti-Abeta immune therapy is a powerful means for Abeta clearance from the brain. We recently showed that intravenous injections of anti-Abeta antibodies led to reduction, elevation or no change in brain Abeta42 concentrations of an AD mouse model. We report here, in a second passive immunization protocol, a different bioactivity of same antibodies to alter brain Abeta42 concentrations. Comparing the bioactivity of anti-Abeta antibodies in these two passive immunization paradigms underscores the potential of immune therapy for AD treatment and suggests that both the epitope recognized by the antibody and the mode of antibody administration are crucial for its biological activity.  相似文献   

17.
Amyloid beta-peptide (Abeta)(1-42) oligomers have recently been discussed as intermediate toxic species in Alzheimer's disease (AD) pathology. Here we describe a new and highly stable Abeta(1-42) oligomer species which can easily be prepared in vitro and is present in the brains of patients with AD and Abeta(1-42)-overproducing transgenic mice. Physicochemical characterization reveals a pure, highly water-soluble globular 60-kDa oligomer which we named 'Abeta(1-42) globulomer'. Our data indicate that Abeta(1-42) globulomer is a persistent structural entity formed independently of the fibrillar aggregation pathway. It is a potent antigen in mice and rabbits eliciting generation of Abeta(1-42) globulomer-specific antibodies that do not cross-react with amyloid precursor protein, Abeta(1-40) and Abeta(1-42) monomers and Abeta fibrils. Abeta(1-42) globulomer binds specifically to dendritic processes of neurons but not glia in hippocampal cell cultures and completely blocks long-term potentiation in rat hippocampal slices. Our data suggest that Abeta(1-42) globulomer represents a basic pathogenic structural principle also present to a minor extent in previously described oligomer preparations and that its formation is an early pathological event in AD. Selective neutralization of the Abeta globulomer structure epitope is expected to have a high potential for treatment of AD.  相似文献   

18.
LRP (low-density lipoprotein receptor-related protein) is linked to Alzheimer's disease (AD). Here, we report amyloid beta-peptide Abeta40 binds to immobilized LRP clusters II and IV with high affinity (Kd = 0.6-1.2 nM) compared to Abeta42 and mutant Abeta, and LRP-mediated Abeta brain capillary binding, endocytosis, and transcytosis across the mouse blood-brain barrier are substantially reduced by the high beta sheet content in Abeta and deletion of the receptor-associated protein gene. Despite low Abeta production in the brain, transgenic mice expressing low LRP-clearance mutant Abeta develop robust Abeta cerebral accumulations much earlier than Tg-2576 Abeta-overproducing mice. While Abeta does not affect LRP internalization and synthesis, it promotes proteasome-dependent LRP degradation in endothelium at concentrations > 1 microM, consistent with reduced brain capillary LRP levels in Abeta-accumulating transgenic mice, AD, and patients with cerebrovascular beta-amyloidosis. Thus, low-affinity LRP/Abeta interaction and/or Abeta-induced LRP loss at the BBB mediate brain accumulation of neurotoxic Abeta.  相似文献   

19.
beta-site APP cleaving enzyme 1 (BACE1) is the beta-secretase enzyme required for generating pathogenic beta-amyloid (Abeta) peptides in Alzheimer's disease (AD). BACE1 knockout mice lack Abeta and are phenotypically normal, suggesting that therapeutic inhibition of BACE1 may be free of mechanism-based side effects. However, direct evidence that BACE1 inhibition would improve cognition is lacking. Here we show that BACE1 null mice engineered to overexpress human APP (BACE1(-/-).Tg2576(+)) are rescued from Abeta-dependent hippocampal memory deficits. Moreover, impaired hippocampal cholinergic regulation of neuronal excitability found in the Tg2576 AD model is ameliorated in BACE1(-/-).Tg2576(+) bigenic mice. The behavioral and electrophysiological rescue of deficits in BACE1(-/-).Tg2576(+) mice is correlated with a dramatic reduction of cerebral Abeta40 and Abeta42 levels and occurs before amyloid deposition in Tg2576 mice. Our gene-based approach demonstrates that lower Abeta levels are beneficial for AD-associated memory impairments, validating BACE1 as a therapeutic target for AD.  相似文献   

20.
beta-Amyloid (Abeta) deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease (AD). Although the molecular mechanisms by which Abeta contributes to the progression of neuropathologic changes have not been established entirely, there is little doubt that the association of Abeta with astrocytes, the predominant cell type in brain, has significant influence on exacerbation of the disease. In an effort to identify key molecules involved in AD, we investigated Abeta-responsive genes using rat astrocytes. In this study, we identified a novel Abeta-induced rat gene, designated as Lib, encoding a type I transmembrane protein with an extracellular domain that contains fifteen leucine-rich repeats (LRRs). Human counterpart of rat Lib is located on chromosome 3q29 and human Lib mRNA found in particularly placenta. Lib mRNA levels in rat C6 astrocytoma cells can be increased by pro-inflammatory cytokines and the rat Lib-transfected cells express Lib protein on the cell surfaces. Lib appears to be a member of the LRR superfamily which is involved in cell-cell and/or -extracellular matrix interactions including adhesion or target recognition in neuroinflammatory states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号