首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrophysiological response of axons, referred to as the "propagation potential," was investigated. The propagation potential is a sustained voltage that lasts as long as an action potential propagates between two widely spaced electrodes. The sign of the potential depends on the direction of action potential propagation. The electrode towards which the action potential is propagating is positive with respect to the electrode from which it is receding. For normal frog sciatic nerves the magnitude of the propagation potential was 17% of the peak of the extracellular action potential; TEA increased it to 32%. For normal earthworm median or lateral giant fibers it was 30%. A ripple pattern on the propagation potential was attributed to variation in resistance along the length of the worm. Cooling increased the duration of the propagation potential and attenuated the higher frequency components of the ripple pattern. Differential records from two widely spaced intracellular microelectrodes in the same axon differed from the propagation potential. The amplitude of the plateau relative to the peak was smaller, it decreased as the action potential propagated from one electrode site to the other, and the potential did not return to zero as rapidly as for extracellular records. When propagation was blocked by heat, the propagation potential slowly decayed. There was no ripple pattern during the decay. In a volume conductor, electrodes contacting the worm did not show the typical propagation potential, but electrodes located a few centimeters away from the worm did. Simple core-conductor models based on classical action potential theory did not reproduce the propagation potential. More complex, modified core-conductor models were needed to accurately simulate it. The results suggest that long, slowly conducting fibers can contribute to the scalp-recorded EEG.  相似文献   

2.
Experiments were performed to determine the quantitative relation existing between action potential and resting potential of the lobster giant axon. Resting potential changes were induced by either increasing the external potassium concentration or by reducing the external calcium concentration. For either treatment the action potential amplitude is proportional to the logarithm of the resting potential minus a constant. This constant is equivalent to the minimum resting potential at which a propagated spike is possible, and is larger for depolarization in low calcium than in high potassium. Thus the change in action potential per unit change in resting potential is greater in low external calcium than in high external potassium. Analog computer solutions to the Hodgkin-Huxley equations for squid axon membrane potentials show that, if the initial conditions are properly specified, the action potential is proportional to the logarithm of the potassium potential minus a constant. The experimental results and the analog computations suggest that reducing external calcium produces changes in the invertebrate axon that cannot be accounted for solely on the basis of alterations in the potassium potential.  相似文献   

3.
Critical Water Potential for Stomatal Closure in Sitka Spruce   总被引:1,自引:0,他引:1  
Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential. Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.  相似文献   

4.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

5.
中国潜在植被NPP的空间分布模拟   总被引:1,自引:0,他引:1  
在对1980年以来气候要素进行空间化的基础上,利用分类回归树模型CART计算中国的潜在归一化植被指数(NDVI),采用改进的光能利用率模型(CASA)和潜在NDVI数据对中国的潜在植被净初级生产力(NPP)进行模拟。结果表明:中国潜在NDVI和潜在NPP均呈现出南高北低、东高西低的格局,低值多分布在沙漠、戈壁等干旱地带,高值多出现在低、中山平原区; 400 mm等降水量线是潜在NDVI和潜在NPP高值与低值的分界线;全国潜在NDVI和潜在NPP的平均值分别为0.396和319.31 g C·m-2;夏季潜在NPP的平均值最大,其次是春季,冬季最小;依据潜在NPP与2015年现实NPP的差异,可将中国植被恢复区划分为西部高潜力区、北部低潜力区和南部非潜力区3部分;潜在NDVI和潜在NPP的空间模拟可以将人类活动对自然生态系统的直接影响与气候变化的影响分离,量化了外界压力下真实的生态状况和潜在生态状况的差异,为制定差别化的生态恢复对策提供了科学依据。  相似文献   

6.
A model of the effects of water stress on seed advancement and germination   总被引:1,自引:0,他引:1  
A model of seed germination is proposed which uses a variable with the units of an osmotic potential (virtual osmotic potential) to integrate the effect of a constant or a varying water potential. This differs from existing models that describe the effects of fixed water potentials on germination, or the effects of fixed priming water potentials on the subsequent germination at a fixed water potential. When a seed is sown, the virtual osmotic potential is assumed to fall at a rate that depends on the ambient water potential, and on the difference between its current and a minimum value. Radicle growth is assumed to initiate when the difference between the ambient water potential and the virtual osmotic potential exceeds a threshold. The germination of carrot and onion seeds at various fixed potentials below 0 MPa was well described by the virtual osmotic potential model. The model was also used to simulate the results of experiments in which seeds were given a single step change in water potential.  相似文献   

7.
1. The plasma membrane potential and the mitochondrial membrane potential of P. yoellii was examined by fluorescence microscopy using rhodamine 123 and by transmembrane distribution of tetraphenylphosphonium. 2. The mitochondrion of P. yoelii, free of gametocyte stage, maintained a high negative inside membrane potential. 3. Deprivation of glucose in incubation medium largely abolished the plasma membrane potential but not the mitochondrial membrane potential. 4. Studies with metabolic inhibitors showed that the mitochondrial membrane potential constituted a marginal portion as compared with the plasma membrane potential in intact infected erythrocytes.  相似文献   

8.
1. Beef heart submitochondrial particles bound to asolectin impregnated Millipore filter, according to the method described earlier (Drachev et al. (1974) Nature 249, 321--324), are able to generate, upon addition of ATP, an electrical potential which can be directly measured. 2. The transmembrane electrical potential generated by ATP hydrolysis reaches values up to 80 mV. The half-time required to attain the plateau of potential is paradoxically long (5 to 10 min at room temperature) and is temperature-dependent. Among different phospholipid species which have been used to impregnate the Millipore filter, phosphatidylethanolamine was found to be the most effective for generation of electrical potential. 3. The potential generated by ATP hydrolysis is inhibited by inhibitors of mitochondrial ATPase, by the uncoupler FCCP and by reagents collapsing the membrane potential. 4. Addition of inhibitors of mitochondrial ATPase, when the plateau of potential is attained, results in a decay of potential. This decay of potential is as slow as the generation of potential induced by ATP hydrolysis. 5. The initial rise in electrical potential is proportional to the ATPase activity.  相似文献   

9.
The skin surface electric potential has been widely used for psychological studies because it is sensitive to emotional conditions. We measured the electric potential on the surface of hairless mice skin in organ culture with several physiological factors. Disruption of mitochondrial function and inhibition of ATPase reduced the skin surface potential 50-70%. Calcium, potassium, and sodium channel blockers also reduced the potential. A calcium-specific and potassium ionophore reduced the potential, but the calcium and magnesium ionophore increased it. EDTA decreased the potential but EGTA had no effect. Skin surface barrier disruption reduced the potential and calcium and potassium channel blockers partially prevented the decrease. Substance P and corticotropin-releasing factor decreased the potential, and antagonists blocked the decreases. These results suggest that the ion flux in the nucleated layer of the epidermis induce the skin surface potential and it is influenced by environmental and neuroendocrinological factors.  相似文献   

10.
Some electrical properties of the synapses between central giant axons (presynaptic) and the motor giant axon (postsynaptic) of the crayfish abdominal nerve cord have been investigated. Postsynaptic potential change in response to presynaptic volleys contains two components: a spike potential and a synaptic potential of very long time course. Amplitude of the synaptic potential is graded according to the number of active presynaptic axons. Conductance increase in the synaptic membrane endures over most of the period of potential change, and it is this rather than the "electrical time constant" of the membrane that in large measure determines the form of the synaptic potential. Temporal summation of synaptic potential occurs during repetitive presynaptic stimulation, and after such stimulation the rate of decay of synaptic potential is greatly slowed.  相似文献   

11.
Summary The tip potential of Ling-Gerard glass microelectrodes changes upon insertion into cells and thus impedes the determination of the actual membrane potential. The lower the membrane potential of a cell, the larger will be the error due to this tip potential. However, as is demonstrated, a relationship exists between the tip potential of the electrode and the measured potential difference, which allows the determination of the membrane potential of a particular cell type by linear regression. This method showed that resting lymphocytes had no membrane potential, whereas for the slime mouldDictyostelitim discoideum a membrane potential of about –9 mV could be calculated.Dedicated to Prof. Dr. Dr. h.c. mult. B. Rajewsky on the occasion of his 80th birthday.  相似文献   

12.
The resting membrane potential of the lobster axon becomes 5–8 mv more negative when the temperature of the perfusion solution is increased 10°C. This potential change is about twice that predicted if the axon membrane potential followed that expected for a potassium ion electrode potential. When the inhibitors, 2, 4-dinitrophenol, sodium cyanide, and sodium azide, were added separately to the perfusion medium the potential change was reduced to about 1.4 times that predicted for a potassium ion electrode potential. Assays of axons exposed to these inhibitors showed that ATP levels were reduced to about one-fourth that obtained for control axons. Ouabain added to the perfusion medium reduced the potential change to that expected for a potassium ion electrode potential. These results suggest that the resting potential changes with temperature as a result of the activity of an electrogenic ion pump.  相似文献   

13.
The development of spike potential mechanisms during cell differentiation was studied in chick myotubes formed in vitro from trypsin-dissociated myoblasts. The spike potential and its rate of rise were measured in myotubes from 4-14 day old cultures. A depolarizing current pulse was delivered to evoke the spike potential after the steady membrane potential had been adjusted to a standard level of -80 mV in all cases. This gives the greatest maximum rate of rise of the spike potential and eliminates variation due to differences in the resting membrane potential of the myotubes. The size and maximum rate of rise of the spike potential increased significantly during the period examined. The spike potential was blocked by tetrodotoxin in almost all myotubes. These results suggest that during differentiation myotubes develop the ability to generate a spike potential due to an inward current carried by sodium ions.  相似文献   

14.
(1) Fluctuations of the membrane potential states are essential for the brain functions from the response of individual neurons to the cognitive function of the brain. It has been reported in slice preparations that the action potential duration is dependent on the membrane potential states. (2) In order to examine whether dependence of action potential duration on the membrane potential could happen in isolated individual neurons that have no network connections, we studied the membrane potential dependence of the action potential duration by artificially setting the membrane potentials to different states in individual cultured rat hippocampal neurons using patch-clamp technique. (3) We showed that the action potential of individual neurons generated from depolarized membrane potentials had broader durations than those generated from hyperpolarized membrane potentials. (4) Furthermore, the membrane potential dependence of the action potential duration was significantly reduced in the presence of voltage-gated K+ channel blockers, TEA, and 4-AP, suggesting involvement of both delayed rectifier I K and transient I A current in the membrane potential dependence of the action potential duration. (5) These results indicated that the dependence of action potential duration on the membrane potential states could be an intrinsic property of individual neurons. Bo Gong and Mingna Liu contributed equally to this work.  相似文献   

15.
The sucrose gap technique, though widely employed in many tissues, could not be used for quantitative measurements of the membrane potential, because the value of the short-circuiting factor and the influence of junction potential on the recorded potential difference were unknown. The formula that relates the recorded potential to the true resting membrane potential was found by application of the cable equations to a core conductor placed in a system with three different media, e.g. Ringer, sucrose, and KCl. The formula shows that the potential difference recorded over the sucrose insulator depends on the extracellular and the intracellular longitudinal resistances, the membrane resistance and the membrane potentials in each region, and on the junction potentials between the different media. The true membrane potential in the Ringer region can be calculated from the potential difference recorded after complete depolarization by KCl on one side of the preparation, if the longitudinal resistances, the membrane resistances, the extracellular potential in the sucrose, and the junction potential between Ringer and sucrose are determined by separate measurements.  相似文献   

16.
The Sagdeev potential technique has been employed to study the dust ion acoustic solitary waves and double layers in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, isothermally distributed electrons, and positrons. A computational scheme has been developed to draw the qualitatively different compositional parameter spaces or existence domains showing the nature of existence of different solitary structures with respect to any parameter of the present plasma system. The present system supports both positive and negative potential double layers. The negative potential double layer always restricts the occurrence of negative potential solitary waves, i.e., any sequence of negative potential solitary waves having monotonically increasing amplitude converges to a negative potential double layer. However, there exists a parameter regime for which the positive potential double layer is unable to restrict the occurrence of positive potential solitary waves. As a result, in this region of the parameter space, there exist solitary waves after the formation of positive potential double layer, i.e., positive potential supersolitons have been observed.  相似文献   

17.
OBJECTIVES--To measure the potential for cadaver organ retrieval in New South Wales and to determine the reasons for potential donors failing to become actual donors. DESIGN--Prospective audit of all patients dying in five hospitals in New South Wales between 1 December 1989 and 30 November 1990; quality assurance of the data by independent medical specialist and if disagreement by study committee. PATIENTS--2879 patients (100% of all deaths) yielding 364 patients with coma and 181 potential donors. OUTCOME MEASURES--Realistic medically suitable potential donor rate, missed potential donor rate, rate of potential donors with permission refused, donor rate, reasons for realistic medically suitable potential donors failing to become actual donors. RESULTS--2879 deaths yielded 73 medically suitable potential donors, resulting in 19 actual donors, 30 missed potential donors, 19 potential donors with permission refused, and five in whom adequate resuscitation failed. The most common reason for a potential donor failing to become an actual donor was a decision by the senior medical practitioner to withdraw or not to institute ventilatory or haemodynamic support (26/73). The second major obstacle was refusal of permission by the next of kin (17/73). Assuming that the potential donor rate was that implied by the observed donor rate (13/million population/year) the projected missed potential donor rate was 9/million population/year (95% confidence interval 4 to 15) and the projected rate of potential donors with permission refused was 13/million population/year (95% confidence interval 5 to 22). Assuming that the rate of potential donors in the study hospitals was the same as in the other New South Wales hospitals, the projected donor rate for New South Wales was 18/million population/year (10 to 26); the projected missed potential donor rate was 15/million population/year (7 to 23); and the projected rate of potential donors with permission refused was 18/million population/year (10 to 27). CONCLUSIONS--The donor rate could be increased 70%-80% by overcoming the reluctance of medical practitioners to resuscitate missed potential donors and increased further by gaining permission for organ retrieval from the next of kin.  相似文献   

18.
Stress-induced osmotic adjustment in growing regions of barley leaves   总被引:8,自引:11,他引:8       下载免费PDF全文
Young barley seedlings were stressed using nutrient solutions containing NaCl or polyethylene glycol and measurements were made of leaf growth, water potential, osmotic potential and turgor values of both growing (basal) and nongrowing (blade) tissues. Rapid growth responses similar to those noted for corn (Plant Physiology 48: 631-636) were obtained using either NaCl or polyethylene glycol treatments by which exposure of seedlings to solutions with water potential values of −3 to −11 bars effected an immediate cessation of leaf elongation with growth resumption after several minutes or hours. Latent periods were increased and growth resumption rates were decreased as water potential values of nutrient solutions were lowered. In unstressed transpiring seedlings, water potential and osmotic potential values of leaf basal tissues were usually −6 to −8 bars, and −12 to −14 bars, respectively. These tissues began to adjust osmotically when exposed to any of the osmotic solutions, and hourly reductions of 1 to 2 bars in both water potential and osmotic potential values usually occurred for the first 2 to 4 hours, but reduction rates thereafter were lower. When seedlings were exposed to solutions with water potential values lower than those of the leaf basal tissues, growth resumed about the time water potential values of those tissues fell to that of the nutrient solution. After 1 to 3 days of seedling exposure to solutions with different water potential values, cumulative leaf elongation was reduced as the water potential values of the root medium were lowered. Reductions in water potential and osmotic potential values of tissues in leaf basal regions paralleled growth reductions, but turgor value was largely unaffected by stress. In contrast, water potential, osmotic potential, and turgor values of leaf blades were usually changed slightly regardless of the degree and duration of stress, and blade water potential values were always higher than water potential values of the basally located cells. It is hypothesized that blades have high water potential values and are generally unresponsive to stress because water in most of the mesophyll cells in this area does not exchange readily with water present in the transpiration stream.  相似文献   

19.
The water potential and the osmotic potential in plants which dominate Greek phryganic ecosystems (Phlomis fruticosa, Sarcopoterium spinosum, Gistus sp.) were measured from April to Nowember. Water potential decreased considerably reaching a minimum in September. Higher values of osmotic potential than that of water potential were found during dry period (i.e. negative values of pressure potential). This interesting fact was confirmed by artificial desiccation.  相似文献   

20.
Duration and amplitude of normal and prolonged action potentials from single nodes of Ranvier vary as functions of potential changes induced by currents from an external source. The quantitative relations between externally applied potential and the resulting potential generated within the system are analyzed in order to obtain information about the kinetics of the electromotance,—potential,—and chemical changes taking place during excitation. The following preliminary conclusions are drawn: A depolarizing and a repolarizing process (positive and negative electromotance) increase and decrease with the potential. For a sudden potential displacement the negative electromotance reaches its new value at a faster rate than the positive electromotance. Since the individual values of the two electromotances depend on the potential and since they both generate a potential which is proportional to the difference of their absolute values, the values of either electromotance are determined by this difference as well as by any externally induced potential change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号