首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   

2.
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), are hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase. Moreover, we found another amidohydrolase catalyzing the same reaction only at acidic pH, and we purified it from rat lung (Ueda, N., Yamanaka, K., and Yamamoto, S. (2001) J. Biol. Chem. 276, 35552-35557). Here we report complementary DNA cloning and functional expression of the enzyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" from human, rat, and mouse. The deduced primary structures revealed that NAAA had no homology to fatty acid amide hydrolase but belonged to the choloylglycine hydrolase family. Human NAAA was essentially identical to a gene product that had been noted to resemble acid ceramidase but lacked ceramide hydrolyzing activity. The recombinant human NAAA overexpressed in HEK293 cells hydrolyzed various N-acylethanolamines with N-palmitoylethanolamine as the most reactive substrate. Most interestingly, a very low ceramide hydrolyzing activity was also detected with NAAA, and N-lauroylethanolamine hydrolyzing activity was observed with acid ceramidase. By the use of tunicamycin and endoglycosidase, NAAA was found to be a glycoprotein. Furthermore, the enzyme was proteolytically processed to a shorter form at pH 4.5 but not at pH 7.4. Expression analysis of a green fluorescent protein-NAAA fusion protein showed a lysosome-like distribution in HEK293 cells. The organ distribution of the messenger RNA in rats revealed its wide distribution with the highest expression in lung. These results demonstrated that NAAA is a novel N-acylethanolamine-hydrolyzing enzyme that shows structural and functional similarity to acid ceramidase.  相似文献   

3.
Bioactive N-acylethanolamines including the endocannabinoid anandamide are known to be hydrolyzed to fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). In addition, we recently cloned an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)", which is active only at acidic pH [Tsuboi, Sun, Okamoto, Araki, Tonai, Ueda, J. Biol. Chem. 285 (2005) 11082-11092]. However, physiological roles of NAAA remained unclear. Here, we examined a possible contribution of NAAA to the degradation of various N-acylethanolamines in macrophage cells. NAAA mRNA as well as FAAH mRNA was detected in several macrophage-like cells, including RAW264.7, and mouse peritoneal macrophages. The homogenates of RAW264.7 cells showed both the NAAA and FAAH activities which were confirmed with the aid of their respective specific inhibitors, N-cyclohexanecarbonylpentadecylamine (CCP) and URB597. As analyzed with intact cells, RAW264.7 cells and peritoneal macrophages degraded anandamide, N-palmitoylethanolamine, N-oleoylethanolamine, and N-stearoylethanolamine. Pretreatment of the cells with CCP or URB597 partially inhibited the degradation, and a combination of the two compounds caused more profound inhibition. In contrast, the anandamide hydrolysis in mouse brain appeared to be principally attributable to FAAH despite the expression of NAAA in the brain. These results suggested that NAAA and FAAH cooperatively degraded various N-acylethanolamines in macrophages.  相似文献   

4.
N-acylethanolamines (NAEs) are a class of bioactive lipid molecules in animal tissues, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. Enzymatic hydrolysis of NAEs is considered to be an important step to regulate their endogenous levels. Lysosomal NAE-hydrolysing acid amidase (NAAA) as well as fatty acid amide hydrolase (FAAH) is responsible for this reaction. Here, we report relatively high expression of NAAA in human prostate cancer cells (PC-3, DU-145 and LNCaP) and prostate epithelial cells (PrEC), with the highest mRNA level in LNCaP cells. FAAH and the NAE-forming enzyme N-acylphosphatidylethanolamine-hydrolysing phospholipase D (NAPE-PLD) were also detected in these cells. NAAA activity in LNCaP cells could be distinguished from coexisting FAAH activity, based on their different pH dependency profiles and specific inhibition of FAAH activity by URB597. These results showed that both the enzymes were functionally active. We also found that NAAA was partly secreted from LNCaP cells, which underlined possible usefulness of this enzyme as a biomarker of prostate cancer.  相似文献   

5.
N-acylethanolamines (NAEs) such as N-palmitoylethanolamine and anandamide are endogenous bioactive lipids having numerous functions, including the control of inflammation. Their levels and therefore actions can be controlled by modulating the activity of two hydrolytic enzymes, N-acylethanolamine-hydrolyzing acid amidase (NAAA) and fatty acid amide hydrolase (FAAH). As macrophages are key to inflammatory processes, we used lipopolysaccharide-activated J774 macrophages, as well as primary mouse alveolar macrophages, to study the effect of FAAH and NAAA inhibition, using PF-3845 and AM9053 respectively, on macrophage activation and NAE levels measured by HPLC-MS. Markers of macrophage activation were measured by qRT-PCR and ELISA. Activation of macrophages decreased NAAA expression and NAE hydrolytic activity. FAAH and NAAA inhibition increased the levels of the different NAEs, although with different magnitudes, whether in control condition or following LPS-induced macrophage activation. Both inhibitors reduced several markers of macrophage activation, such as mRNA expression of inflammatory mediators, as well as cytokine and prostaglandin production, with however some differences between FAAH and NAAA inhibition. Most of the NAEs tested – including N-docosatetraenoylethanolamine and N-docosahexaenoylethanolamine – also reduced LPS-induced mRNA expression of inflammatory mediators, again with differences depending on the marker and the NAE, thus offering a potential explanation for the differential effect of the inhibitors on macrophage activation markers. In conclusion, we show different and complementary effects of NAE on lipopolysaccharide-induced macrophage activation. Our results support an important role for inhibition of NAE hydrolysis and NAAA inhibition in particular in controlling macrophage activation, and thus inflammation.  相似文献   

6.
N-Acylethanolamines (NAEs) including N-arachidonoylethanolamine (anandamide) and N-palmitoylethanolamine are endogenous lipid mediators. These molecules are degraded to the corresponding fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH) or NAE-hydrolyzing acid amidase (NAAA). Lipophilic amines, especially pentadecylamine (2c) and tridecyl 2-aminoacetate (11b), were found to exhibit potent NAAA inhibitory activities (IC(50)=5.7 and 11.8μM), with much weaker effects on FAAH. These simple structures would provide a scaffold for further improvement in NAAA inhibitory activity.  相似文献   

7.
N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) hydrolase that catalyses the intracellular deactivation of the endogenous analgesic and anti-inflammatory agent palmitoylethanolamide (PEA). NAAA inhibitors counteract this process and exert marked therapeutic effects in animal models of pain, inflammation and neurodegeneration. While it is known that NAAA preferentially hydrolyses saturated fatty acid ethanolamides (FAEs), a detailed profile of the relationship between catalytic efficiency and fatty acid-chain length is still lacking. In this report, we combined enzymatic and molecular modelling approaches to determine the effects of acyl chain and polar head modifications on substrate recognition and hydrolysis by NAAA. The results show that, in both saturated and monounsaturated FAEs, the catalytic efficiency is strictly dependent upon fatty acyl chain length, whereas there is a wider tolerance for modifications of the polar heads. This relationship reflects the relative stability of enzyme-substrate complexes in molecular dynamics simulations.  相似文献   

8.
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme hydrolyzing bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. Previously, we suggested that NAAA is glycosylated and proteolytically cleaved. Here, we investigated the mechanism and significance of the cleavage of human NAAA overexpressed in human embryonic kidney 293 cells. Western blotting with anti-NAAA antibody revealed that most of NAAA in the cell homogenate was the cleaved 30-kDa form. However, some of NAAA were released outside the cells and the extracellular enzyme was mostly the uncleaved 48-kDa form. When incubated at pH 4.5, the 48-kDa form was time-dependently converted to the 30-kDa form with concomitant increase in the N-palmitoylethanolamine-hydrolyzing activity. The purified 48-kDa form was also cleaved and activated. However, the cleavage did not proceed at pH 7.4 or in the presence of p-chloromercuribenzoic acid. The mutant C126S was resistant to the cleavage and remained inactive. These results suggested that this specific proteolysis is a self-catalyzed activation step. We next determined N-glycosylation sites of human NAAA by site-directed mutagenesis addressed to asparagine residues in six potential N-glycosylation sites. The results exhibited that Asn-37, Asn-107, Asn-309, and Asn-333 are actual N-glycosylation sites. The glycosylation appeared to play an important role in stabilizing the enzyme protein.  相似文献   

9.
Y Li  L Yang  L Chen  C Zhu  R Huang  X Zheng  Y Qiu  J Fu 《PloS one》2012,7(8):e43023
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme involved in biological deactivation of N-palmitoylethanolamide (PEA), which exerts anti-inflammatory and analgesic effects through the activation of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-α). To develop selective and potent NAAA inhibitors, we designed and synthesized a series of derivatives of 1-pentadecanyl-carbonyl pyrrolidine (compound 1), a general amidase inhibitor. Structure activity relationship (SAR) studies have identified a compound 16, 1-(2-Biphenyl-4-yl)ethyl-carbonyl pyrrolidine, which has shown the highest inhibition on NAAA activity (IC50 = 2.12±0.41 µM) and is characterized as a reversible and competitive NAAA inhibitor. Computational docking analysis and mutagenesis study revealed that compound 16 interacted with Asparagine 209 (Asn209) residue flanking the catalytic pocket of NAAA so as to block the substrate entrance. In vitro pharmacological studies demonstrated that compound 16 dose-dependently reduced mRNA expression levels of iNOS and IL-6, along with an increase of intracellular PEA levels, in mouse macrophages with lipopolysaccharides (LPS) induced inflammation. Our study discovered a novel NAAA inhibitor, compound 16, that could serve as a potential anti-inflammatory agent.  相似文献   

10.
Macrophages are multi-faceted phagocytic effector cells that derive from circulating monocytes and undergo differentiation in target tissues to regulate key aspects of the inflammatory process. Macrophages produce and degrade a variety of lipid mediators that stimulate or suppress pain and inflammation. Among the analgesic and anti-inflammatory lipids released from these cells are the fatty acid ethanolamides (FAEs), which produce their effects by engaging nuclear peroxisome proliferator activated receptor-α (PPAR-α). Two members of this lipid family, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), have recently emerged as important intrinsic regulators of nociception and inflammation. These substances are released from the membrane precursor, N-acylphosphatidylethanolamine (NAPE), by the action of a NAPE-specific phospholipase D (NAPE-PLD), and in macrophage are primarily deactivated by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). NAPE-PLD and NAAA regulate FAE levels, exerting a tight control over the ability of these lipid mediators to recruit PPAR-α and attenuate the inflammatory response. This review summarizes recent findings on the contribution of the FAE-PPAR-α signaling complex in inflammation, and on NAAA inhibition as a novel mechanistic approach to treat chronic inflammatory disorders.  相似文献   

11.
N-Arachidonoylethanolamine (anandamide) is cannabimimetic, and N-palmitoylethanolamine is anti-inflammatory and immunosuppressive. We found an amidase that is more active with the latter than the former in contrast to the previously known anandamide amidohydrolase for which N-palmitoylethanolamine is a poor substrate. Proteins solubilized by freezing and thawing from the 12,000 x g pellet of various rat organs hydrolyzed [(14)C]N-palmitoylethanolamine to palmitic acid and ethanolamine. The specific enzyme activity was higher in the order of lung > spleen > small intestine > thymus > cecum, and high activity was found in peritoneal and alveolar macrophages. The enzyme with a molecular mass of 31 kDa was purified from rat lung to a specific activity of 1.8 micromol/min/mg protein. Relative reactivities of the enzyme with various N-acylethanolamines (100 microm) were as follows: N-palmitoylethanolamine, 100%; N-myristoylethanolamine, 48%; N-stearoylethanolamine, 21%; N-oleoylethanolamine, 20%; N-linoleoylethanolamine, 13%; anandamide, 8%. The enzyme was the most active at pH 5 and was activated 7-fold by Triton X-100. The enzyme was almost insensitive to methyl arachidonyl fluorophosphonate, which inhibited anandamide amidohydrolase potently. Thus, the new enzyme referred to as N-palmitoylethanolamine hydrolase was clearly distinguishable from anandamide amidohydrolase.  相似文献   

12.
N-Acylethanolamines, including N-palmitoyl-ethanolamine (PEA), are hydrolyzed to the corresponding fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). Recently, N-acylethanolamine-hydrolyzing acid amidase (NAAA) was identified as being able to specifically hydrolyze PEA. In order to find selective and effective inhibitors of this enzyme, we synthesized and screened several amides, retroamides, esters, retroesters and carbamates of palmitic acid (121) and esters with C15 and C17 alkyl chains (2227). Cyclopentylhexadecanoate (13) exhibited the highest inhibitory activity on NAAA (IC50 = 10.0 μM), without inhibiting FAAH up to 50 μM. Compound 13 may become a useful template to design new NAAA inhibitors.  相似文献   

13.
Stat3 activation in acute lung injury   总被引:8,自引:0,他引:8  
Stat3 plays diverse roles in biological processes including cell proliferation, survival, apoptosis, and inflammation. Very little is known regarding its activation and function in the lung during acute inflammation. We now show that Stat3 activation was triggered in lungs and in alveolar macrophages after intrapulmonary deposition of IgG immune complexes in rats. Low levels of constitutive Stat3 were observed in normal rat lungs as determined by the EMSA. Stat3 activity in whole lung extracts increased 2 h after initiation of IgG immune complex deposition, reaching maximal levels by 4 h, whereas Stat3 activation was found in alveolar macrophages as early as 30 min after onset of injury. Expression and activation of Stat3 mRNA, protein, and protein phosphorylation was accompanied by increased gene expression of IL-6, IL-10, and suppressor of cytokine signaling-3 in whole lung tissues. Both Tyr(705) and Ser(727) phosphorylation were involved in Stat3 activation as assessed in whole lung extracts. C5a (complement 5, fragment a) per se can induce phosphorylation of Ser(727) of Stat3. In vivo, Stat3 activation was dramatically suppressed by depletion of neutrophils or lung macrophages, resulting in reduced gene expression of IL-6 and IL-10 in whole lung tissues. Using blocking Abs to IL-6, IL-10, and C5a, Stat3 activation induced by IgG immune complexes was markedly diminished. These data suggest in the lung injury model used that activation of Stat3 in lungs is macrophage dependent and neutrophil dependent. IL-6, IL-10, and C5a contribute to Stat3 activation in inflamed rat lung.  相似文献   

14.
Summary A tartrate-resistant purple acid phosphatase was localized in human and bovine alveolar macrophages by enzyme- and immuno-histochemistry using an antibody to bovine spleen purple phosphatase. The enzyme could be detected in human and bovine lung tissues as well as on cytospin preparations of alveolar macrophage suspensions from bronchoalveolar lavages. The immunological identity of human and bovine purple phosphatases from alveolar macrophages was demonstrated by Western blot analysis of material separated by polyacrylamide gel electrophoresis. A possible significance of the purple phosphatase as a marker enzyme of activated cells of the mononuclear phagocyte system is discussed.  相似文献   

15.
A tartrate-resistant purple acid phosphatase was localized in human and bovine alveolar macrophages by enzyme- and immuno-histochemistry using an antibody to bovine spleen purple phosphatase. The enzyme could be detected in human and bovine lung tissues as well as on cytospin preparations of alveolar macrophage suspensions from bronchoalveolar lavages. The immunological identity of human and bovine purple phosphatases from alveolar macrophages was demonstrated by Western blot analysis of material separated by polyacrylamide gel electrophoresis. A possible significance of the purple phosphatase as a marker enzyme of activated cells of the mononuclear phagocyte system is discussed.  相似文献   

16.
Anandamide (N-arachidonoylethanolamine) loses its cannabimimetic activity when it is hydrolyzed to arachidonic acid and ethanolamine by the catalysis of an enzyme referred to as anandamide amidohydrolase or fatty acid amide hydrolase. Cravatt's group and our group cloned cDNA of the enzyme from rat, human, mouse and pig, and the primary structures revealed that the enzymes belong to an amidase family characterized by the amidase signature sequence. The recombinant enzyme acted not only as an amidase for anandamide and oleamide, but also as an esterase for 2-arachidonoylglycerol. The reversibility of the enzymatic anandamide hydrolysis and synthesis was also confirmed with a purified recombinant enzyme. Several fatty acid derivatives like methyl arachidonyl fluorophosphonate potently inhibited the enzyme. The enzyme was distributed widely in mammalian organs such as liver, small intestine and brain. However, the anandamide hydrolyzing enzyme found in human megakaryoblastic cells was catalytically distinct from the previously known enzyme.  相似文献   

17.
ADP-ribosylation is a reversible post-translational modification of proteins involving the addition of the ADP-ribose moiety of NAD to an acceptor protein or amino acid. NAD: arginine ADP-ribosyltransferase, purified from numerous animal tissues, catalyzes the transfer of ADP-ribose to an arginine residue in proteins. The reverse reaction, catalyzed by ADP-ribosylarginine hydrolase, removes ADP-ribose, regenerating free arginine. An ADP-ribosylarginine hydrolase, purified extensively from turkey erythrocytes, was a 39-kDa monomeric protein under denaturing and non-denaturing conditions, and was activated by Mg2+ and dithiothreitol. The ADP-ribose moiety was critical for substrate recognition; the enzyme hydrolyzed ADP-ribosylarginine and (2-phospho-ADP-ribosyl)arginine but not phosphoribosylarginine or ribosylarginine. The hydrolase cDNA was cloned from rat and subsequently from mouse and human brain. The rat hydrolase gene contained a 1086-base pair open reading frame, with deduced amino acid sequences identical to those obtained by amino terminal sequencing of the protein or of HPLC-purified tryptic peptides. Deduced amino acid sequences from the mouse and human hydrolase cDNAs were 94% and 83% identical, respectively to the rat. Anti-rat brain hydrolase polyclonal antibodies reacted with turkey erythrocyte, mouse and bovine brain hydrolase. The rat hydrolase, expressed inE. coli, demonstrated enhanced activity in the presence of Mg2+ and thiol, whereas the recombinant human hydrolase was stimulated by Mg2+ but was thiol-independent. In the rat and mouse enzymes, there are five cysteines in identical positions; four of the cysteines are conserved in the human hydrolase. Replacement of cysteine 108 in the rat hydrolase (not present in the human enzyme) resulted in a thiol-independent hydrolase without altering specific activity. Rabbit anti-rat brain hydrolase antibodies reacted on immunoblot with the wild-type rat hydrolase and only weakly with the mutant hydrolase. There was no immunoreactivity with either the wild-type or mutant human enzyme. Cysteine 108 in the rat and mouse hydrolase may be responsible in part for thiol-dependence as wall as antibody recognition. Based on these studies, the mammalian and avian ADP-ribosylarginine hydrolases exhibit considerable conservation in structure and function.  相似文献   

18.
N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme which hydrolyzes bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. NAAA shows acidic pH optimum in terms of both catalytic activity and maturation by specific proteolysis. However, molecular mechanism involved in this characteristic pH dependency remained unclear. Here we report the important role of Glu-195 of human NAAA by analyzing the mutants E195A and E195Q overexpressed in human embryonic kidney 293 cells. Concanamycin A, raising lysosomal pH, inhibited maturation of the wild-type, but not of the Glu-195 mutants. The purified precursors of the mutants, but not the wild-type, were proteolytically cleaved at pH 7.4 during 24-h incubation. Furthermore, when assayed for N-palmitoylethanolamine-hydrolyzing activity at different pH, the mutants did not exhibit a sharp peak around pH 4.5 in the pH-dependent activity profile. Mutants of other seven glutamic acid residues did not show such an abnormality. These results suggested a unique role of Glu-195 in the pH-dependent activity and proteolytic maturation. Moreover, Arg-142, Asp-145, and Asn-287 as well as previously identified Cys-126 were shown to be essential for the proteolytic activation. Since these residues were predicted to be catalytically important, the results strongly suggested that the proteolysis occurs through an autocatalytic mechanism.  相似文献   

19.
Catabolism of N-Acylethanolamine Phospholipids by Dog Brain Preparations   总被引:1,自引:1,他引:0  
Abstract: N -Acylphosphatidylethanolamine, incubated with dog brain homogenate or microsomes, was hydroyzed to phosphatidic acid and N -acylethanolamine by a phosphodiesterase of the phospholipase D type. In the absence of F, phosphatidic acid was further hydrolyzed to diacylglycerol and Pi while N -acylethanolamine was hydrolyzed by an amidase to fatty acid and ethanolamine. The phosphodiesterase showed an alkaline pH optimum and was also active towards N -acetylphosphatidyletha-nolamine, N -acyl-lysophosphatidylethanolamine, and glycerophospho( N -acyl)ethanolamine but showed little activity toward phosphatidylethanolamine and phosphati-dylcholine. Ca2+ stimulated slightly at low concentrations but inhibited at higher concentrations. Triton X-100 stim ulated the hydrolysis of N -acylphosphatidylethanol-amine, inhibited that of N -acyl-lysophosphatidyletha-nolamine and glycerophospho( N -acyl)ethanolamine, and had no effect on phosphatidylethanolamine or phospha-tidylcholine hydrolysis. The N -acylethanolamine hydrolase (amidase) was also present in the microsomal fraction and exhibited a pH optimum of 10.0. In addition to hydrolysis by the phosphodiesterase, N -acylphosphati-dylethanolamine was also catabolized by microsomal phospholipases A1 and/or A2 to N -acyl-lysophosphati-dylethanolamine, some of which was further hydrolyzed to glycerophospho( N -acyl)ethanolamine.  相似文献   

20.
Bioactive N-acylethanolamines (NAEs) include palmitoylethanolamide, oleoylethanolamide, and anandamide, which exert anti-inflammatory, anorexic, and cannabimimetic actions, respectively. The degradation of NAEs has been attributed to two hydrolases, fatty acid amide hydrolase and NAE acid amidase (NAAA). Acid ceramidase (AC) is a lysosomal enzyme that hydrolyzes ceramide (N-acylsphingosine), which resembles NAAA in structure and function. In the present study, we examined the role of AC in the degradation of NAEs. First, we demonstrated that purified recombinant human AC can hydrolyze various NAEs with lauroylethanolamide (C12:0-NAE) as the most reactive NAE substrate. We then used HEK293 cells metabolically labeled with [14C]ethanolamine, and revealed that overexpressed AC lowered the levels of 14C-labeled NAE. As analyzed with liquid chromatography-tandem mass spectrometry, AC overexpression decreased the amounts of different NAE species. Furthermore, suppression of endogenous AC in LNCaP prostate cells by siRNA increased the levels of various NAEs. Lastly, tissue homogenates from mice genetically lacking saposin D, a presumable activator protein of AC, showed much lower hydrolyzing activity for NAE as well as ceramide than the homogenates from wild-type mice. These results demonstrate the ability of AC to hydrolyze NAEs and suggest its physiological role as a third NAE hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号